少数派博弈
外观
(重定向自少數派賽局)
厄爾法羅酒吧問題,又稱少數派博弈,是一種經常出現在經濟活動中的博弈行為。該模型源自由1994年W·布萊恩·亞瑟提出了El Farol酒吧問題[1]。
在这一博弈中,参与者们拥有两种选择(例如0和1)。所有人都做出选择之后,将参与者按照所做的选择分为两派。人数较少的那一方,也就是少数派将会获胜。该博弈还可以进一步分为是否多次进行,参与者是否记得之前游戏的结果等多种类型。
变体形式
[编辑]El Farol酒吧问题
[编辑]El Farol酒吧問題(El Farol Bar problem)是1994年由斯坦福大學經濟學教授威廉·布萊恩·阿瑟提出的一個具有代表性的資源分配問題。該問題可以被這樣表述:
在一個鎮上有一間不錯的酒吧,鎮上的一群人(比如總共有100人),每個週末晚上沒什麼事,於是他們均要決定,是去鎮上的酒吧消遣娛樂還是選擇呆在家裡休息。該酒吧的客容量是有限的,比如房間空間是有限的,或者酒吧座位是有限的。我們假定酒吧的容量是40人,或者說座位是40個。如果當天去酒吧的人數少於40人,那麼在酒吧的人可以充分享受到優雅的環境和優質的服務,因此相比呆在家裡他去酒吧是更享受的決定;但是,如果去酒吧的人超過40人,那麼由於環境太過擁擠造成去酒吧享受不到優質的服務,與其這樣還不如選擇呆在家裡更明智。
這個酒吧問題的難點在於,每個人都有類似的想法,我們假定這100個人之間不存在訊息交流,於是他們每個週末都要對去酒吧的人數進行預測,而決定自己去不去酒吧。這裡每個人決策的依據只能是以往的歷史訊息,但是不同人根據歷史歸納出的規律可能不同。這是一個經典的動態博弈問題。通過計算機模擬,亞瑟得出一個有趣的結果:儘管不存在一個可預測的規律,經過一段時間以後,這群人卻自組織形成一個均衡態,即平均去酒吧的人數趨向少於酒吧容量。
加尔各答派萨问题
[编辑]参见
[编辑]参考资料
[编辑]- Arthur, W. Brian. Inductive Reasoning and Bounded Rationality (PDF). American Economic Review: Papers and Proceedings. 1994, 84: 406–411 [2014-12-13]. (原始内容存档 (PDF)于2015-02-20).
- ^ "The Ecology of Computation", Studies in Computer Science and Artificial Intelligence, North Holland publisher, page 99. 1988.
外部链接
[编辑]- NetLogo Models Library:Sample Models/Social Science/Unverified (页面存档备份,存于互联网档案馆)
- An Introductory Guide to the Minority Game
- Minority Games (页面存档备份,存于互联网档案馆) (a popularization account)
- Minority game on arxiv.org
- El Farol bar in Santa Fe, New Mexico (页面存档备份,存于互联网档案馆)
- The El Farol Bar problem in Java (页面存档备份,存于互联网档案馆) using The Java Agent-Based Modelling Toolkit (JABM) (页面存档备份,存于互联网档案馆)
- Kolkata Paise Restaurant (KPR) Problem: Wolfram Demonstrations (页面存档备份,存于互联网档案馆)