跳转到内容

File:Line integral of scalar field.gif

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

Line_integral_of_scalar_field.gif (400 × 300像素,文件大小:580 KB,MIME类型:image/gif、​循环、​61帧、​39秒)


摘要

描述
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле.
日期
来源 自己的作品
作者 Lucas Vieira
授权
(二次使用本文件)
Public domain 我,本作品著作权人,释出本作品至公有领域。这适用于全世界。
在一些国家这可能不合法;如果是这样的话,那么:
我无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。
其他版本

评价

图像 of the year
图像 of the year
Featured 图像

维基共享资源维基百科

本文件是2012年年度图片比赛的决赛图片
本文件是维基共享资源特色图片(特色图片),并被视为最好的图像之一。

 本文件是英语维基百科特色图片(Featured pictures),并被视为最好的图像之一。
 本文件是波斯语维基百科特色图片(نگاره‌های برگزیده),并被视为最好的图像之一。

如果你拥有相似质量的可采用适当著作权许可协议发布的图像,一定要上传标记推荐它。

Full description (English)

A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.

In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:

  1. The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
  2. The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
  3. The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
  4. The graph is rotated to face the curve from a better angle
  5. The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
  6. The graph is rotated so we view the blue surface defined by both curves face on
  7. This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描绘内容

image/gif

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2012年8月14日 (二) 16:432012年8月14日 (二) 16:43版本的缩略图400 × 300(580 KB)LucasVBUnoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say!
2012年7月25日 (三) 12:242012年7月25日 (三) 12:24版本的缩略图400 × 300(328 KB)LucasVBAlternative illustration of the "straightening" of the curve. It should convey the concept better than the previous one, which may be interpreted as a mere projection. Also, changed to pattern dithering. Seems to look better, and file is smaller even t...
2012年7月24日 (二) 16:592012年7月24日 (二) 16:59版本的缩略图400 × 300(337 KB)LucasVB{{Information |Description= |Source={{own}} |Date=2012-07-24 |Author= Kieff |Permission={{PD-self}} |other_versions= }}

全域文件用途

以下其他wiki使用此文件:

查看此文件的更多全域用途