跳转到内容

惠勒-德威特方程式

本页使用了标题或全文手工转换
维基百科,自由的百科全书

理论物理中,惠勒-德威特方程式(英语:Wheeler-DeWitt equation,简称惠-德方程)是一个描述宇宙波函数必须满足量子重力理论的方程式。 其中一个波函数的例子是哈妥-霍金态

简单说,惠-德方程的数学形式为:

其中量子化广义相对论中的全部哈密顿约束。 广义来说,在一个时间尺度不变性的理论中,哈密顿算符会是零。

虽然符号上,和传统非相对论性量子力学所用符号相同,然而诠释上,惠勒-德威特方程式则与非相对论性量子力学中的方程式大相迳庭。不再是传统上空间波函数的观点(即一复数值的函数,定义于3维类空表面,且归一化。相对地,它是个定义于时空整体的场结构的泛函。此项波函数包含了所有关于宇宙几何以及物质内涵的所有资讯。依然是作用在希尔伯特空间中各个波函数上的一项算符,但是这个希尔伯特空间已与非相对论性量子力学中的希尔伯特空间不同,而且哈密顿算符不再决定系统的演化(所以薛定谔方程式————不再适用)。

此方程式源自于ADM形式

相关条目

[编辑]