跳转到内容

格利泽1151

维基百科,自由的百科全书
格利泽1151(GJ 1151)

艺术家印像中的GJ 1151和GJ 1151 b。
观测资料
历元 J2000.0
星座 大熊座
星官
赤经 11h 50m 57.72145s[1]
赤纬 +48° 22′ 38.5625″[1]
视星等(V) 14.008[2]
特性
光谱分类dM4.5[2]
B−V 色指数1.787[3]
天体测定
径向速度 (Rv)−36.01±0.28[4] km/s
自行 (μ) 赤经:-1545.069[1] mas/yr
赤纬:-962.724[1] mas/yr
视差 (π)124.3378 ± 0.0549[1] mas
距离26.23 ± 0.01 ly
(8.043 ± 0.004 pc)
绝对星等 (MV)14.482±0.022[2]
详细资料
质量0.1540[3] M
半径0.1903[3] R
温度3,143±26[2] K
金属量 [Fe/H]+0.04[2] dex
自转速度 (v sin i)2.0[4] km/s
年龄2.5[3] Gyr
其他命名
GJ 1151、​G 122-49、​LHS 316、​NLTT 28752、​2MASS J11505787+4822395, Gaia EDR3 786834302080370304[5]
参考资料库
SIMBAD资料

GJ 1151是一颗位于北天拱极星座大熊座北部的一颗拱极星,距离太阳26.2光年。它具有微红的色调,视星等为14.0等,因为太黯淡而使得肉眼看不见[2]。这颗恒星正在以−36km/s的径向速度接近[4],并且具有相对较大的自行,以1.815·yr−1的速率穿越天球[6]

这是一颗小的红矮星,其光谱类型为dM4.5[2]。 它有25亿年的历史[3],并且以2.0的投影旋转速度自转[4]。这颗恒星的质量约为太阳的15.4%[3],半径为太阳半径的19.0%[3]有效温度为3,143K[2]

行星系?

[编辑]

2020年,天文学家宣布发现来自恒星的无线电辐射具有大约地球大小的行星,在1-5天的轨道上公转,并与恒星的磁场相互作用[7][8][9][10][11][12]。这样的交互作用类似于将木星-木卫一磁场相互作用放大的版本,GJ 1151扮演木星,而其行星扮演木卫一的角色。该发现于2021年2月使用径向速度法得到证实[13],但随著更多数据的出现,一个月后就遭到驳斥[14]

格利泽1151的行星系[8][13]
成员
(依恒星距离)
质量 半长轴
(AU)
轨道周期
()
离心率 倾角 半径
b (未确认) ≤1.2[14] M 0.01735+0.00065
−0.00070
2.0183+0.0084
−0.0008
?

相关条目

[编辑]

参考资料

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 1.4 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533可免费查阅. doi:10.1051/0004-6361/202039657可免费查阅.  已忽略未知参数|collaboration= (帮助) (勘误: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Houdebine, Éric R.; et al. The Mass-Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs. The Astronomical Journal. August 2019, 158 (2): 17. Bibcode:2019AJ....158...56H. S2CID 159041104. arXiv:1905.07921可免费查阅. doi:10.3847/1538-3881/ab23fe. 56. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Mann, Andrew W.; et al. How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius. The Astrophysical Journal. May 2015, 804 (1): 38. Bibcode:2015ApJ...804...64M. S2CID 19269312. arXiv:1501.01635可免费查阅. doi:10.1088/0004-637X/804/1/64. 64. 
  4. ^ 4.0 4.1 4.2 4.3 Jeffers, S. V.; et al. CARMENES input catalogue of M dwarfs. III. Rotation and activity from high-resolution spectroscopic observations. Astronomy & Astrophysics. June 2018, 614: 19. Bibcode:2018A&A...614A..76J. S2CID 56147445. arXiv:1802.02102可免费查阅. doi:10.1051/0004-6361/201629599. A76. 
  5. ^ G 122-49. SIMBAD. 斯特拉斯堡天文资料中心. 
  6. ^ Lépine, Sébastien; Shara, Michael M. A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog). The Astronomical Journal. March 2005, 129 (3): 1483–1522. Bibcode:2005AJ....129.1483L. S2CID 2603568. arXiv:astro-ph/0412070可免费查阅. doi:10.1086/427854. 
  7. ^ Vedantham, H. K.; et al. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nature Astronomy. 2020-02-17, 4 (6): 577–583 [2022-09-01]. Bibcode:2020NatAs.tmp...34V. ISSN 2397-3366. S2CID 211204712. arXiv:2002.08727可免费查阅. doi:10.1038/s41550-020-1011-9. hdl:1887/3133600. (原始内容存档于2023-01-20) (英语). 
  8. ^ 8.0 8.1 Pope, Benjamin J. S.; et al. No Massive Companion to the Coherent Radio-emitting M Dwarf GJ 1151. The Astrophysical Journal Letters. 17 February 2020, 890 (2): L19 [1 March 2020]. Bibcode:2020ApJ...890L..19P. S2CID 211171765. arXiv:2002.07850可免费查阅. doi:10.3847/2041-8213/ab5b99. (原始内容存档于2023-02-14). 
  9. ^ Starr, Michelle. For The First Time, Astronomers Have Detected an Exoplanet Using Radio Waves. ScienceAlert.com. 29 February 2020 [1 March 2020]. (原始内容存档于2022-09-26). 
  10. ^ Radio telescope measures aurorae in distant planetary system. UPI. [2020-02-26]. (原始内容存档于2022-04-22) (英语). 
  11. ^ Redd, Nola Taylor. New Exoplanet Search Strategy Claims First Discovery. Quanta Magazine. 18 February 2020 [2020-02-26]. (原始内容存档于2023-03-27) (英语). 
  12. ^ Clark, Stuart. An exoplanet is generating radio waves from its red dwarf sun. New Scientist. [2020-02-26]. (原始内容存档于2022-12-05) (美国英语). 
  13. ^ 13.0 13.1 Mahadevan, Suvrath; Stefánsson, Gudmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D.; Kanodia, Shubham; Ramsey, Lawrence W.; Wolszczan, Alexander; Endl, Michael; Bender, Chad F.; Diddams, Scott A.; Fredrick, Connor; Hearty, Fred; Monson, Andrew; Metcalf, Andrew J.; Roy, Arpita; Schwab, Christian, The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star, The Astrophysical Journal Letters, 2021, 919 (1): L9, Bibcode:2021ApJ...919L...9M, S2CID 231802021, arXiv:2102.02233可免费查阅, doi:10.3847/2041-8213/abe2b2 
  14. ^ 14.0 14.1 Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Béjar, V. J. S.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Pallé, E.; Rodríguez-López, C.; Schweitzer, A.; Zapatero Osorio, M. R.; Zechmeister, M., The CARMENES search for exoplanets around M dwarfs, Astronomy & Astrophysics, 2021, 649: L12, S2CID 126038821, arXiv:2103.10216可免费查阅, doi:10.1051/0004-6361/202140786