维格纳分布 (又名韦格纳分布 ,英文: Wigner Distribution Function ,缩写为WDF ) 是由1963年的诺贝尔物理学奖 得主尤金·维格纳 ,于1932年首次引用的一个新的方程式 。
众所皆知,傅立叶变换 对于研究稳态(时间独立)的讯号(波形)是一项非常有用的工具,然而,讯号(波形)一般来说在时间上并非是独立的,这样的讯号或是波形傅立叶变换并无法有效地完全分析其特性,因此对于一个非稳态的讯号完全分析需要测量出时间以及频率上的表现。本页面介绍的数学函数是时频分析 中的基础方法,在1980年,Claasen,Mecklenbrauker对WDF做了更进一步的研究。除此之外,线性时频分析中,STFT、Gabor transform和WDF扮演了相当重要的角色,其中WDF对于分析很多非稳态的随机讯号都有很好的表现,例如:量子力学 、光学 、声学 、通讯 、生物工程 、讯号处理 和影像处理 。有时也被用在分析地震的资料,以及处理声音的相位失真。
维格纳分布有许多不同的定义,而此处的定义是特别针对时频分析而定的。若给定一时间序列
x
[
t
]
{\displaystyle x[t]}
,它的非平稳自相关函数 如下公式所列
C
x
(
t
1
,
t
2
)
=
⟨
(
x
[
t
1
]
−
μ
[
t
1
]
)
(
x
[
t
2
]
−
μ
[
t
2
]
)
∗
⟩
,
{\displaystyle C_{x}(t_{1},t_{2})=\left\langle \left(x[t_{1}]-\mu [t_{1}]\right)\left(x[t_{2}]-\mu [t_{2}]\right)^{*}\right\rangle ,}
其中
⟨
⋯
⟩
{\displaystyle \langle \cdots \rangle }
代表所有可能实验的程序的平均,
μ
[
t
]
{\displaystyle \mu [t]}
代表平均,其可能是时间的函数也有可能不是。维格纳函数
W
x
(
t
,
f
)
{\displaystyle W_{x}(t,f)}
起初是以包含时间平均
t
=
(
t
1
+
t
2
)
/
2
{\displaystyle t=(t_{1}+t_{2})/2}
与时间差
τ
=
t
1
−
t
2
{\displaystyle \tau =t_{1}-t_{2}}
的自相关函数和时间差进行傅立叶转换来表示,如下:
W
x
(
t
,
f
)
=
∫
−
∞
∞
C
x
(
t
+
τ
2
,
t
−
τ
2
)
e
−
2
π
i
τ
f
d
τ
.
{\displaystyle W_{x}(t,f)=\int _{-\infty }^{\infty }C_{x}\left(t+{\frac {\tau }{2}},t-{\frac {\tau }{2}}\right)\,e^{-2\pi i\tau f}\,d\tau .}
对于单一零平均的时间序列,维格纳函数可以简化如下:
W
x
(
t
,
f
)
=
∫
−
∞
∞
x
(
t
+
τ
2
)
x
∗
(
t
−
τ
2
)
e
−
j
2
π
τ
f
d
τ
{\displaystyle W_{x}(t,f)=\int _{-\infty }^{\infty }x(t+{\frac {\tau }{2}})x^{*}(t-{\frac {\tau }{2}})e^{-j2\pi \tau f}\,d\tau }
.....(1)
W
x
(
t
,
ω
)
=
∫
−
∞
∞
x
(
t
+
τ
2
)
x
∗
(
t
−
τ
2
)
e
−
j
ω
τ
d
τ
{\displaystyle W_{x}(t,\omega )=\int _{-\infty }^{\infty }x(t+{\frac {\tau }{2}})x^{*}(t-{\frac {\tau }{2}})e^{-j\omega \tau }\,d\tau }
.....(2)
定义二与定义一之间的关系 :
ω
=
2
π
f
{\displaystyle \omega =2\pi f}
1
2
π
W
x
(
t
,
ω
)
=
∫
−
∞
∞
x
(
t
+
τ
2
)
x
∗
(
t
−
τ
2
)
e
−
j
ω
τ
d
τ
{\displaystyle {\sqrt {\frac {1}{2\pi }}}W_{x}(t,\omega )=\int _{-\infty }^{\infty }x(t+{\frac {\tau }{2}})x^{*}(t-{\frac {\tau }{2}})e^{-j\omega \tau }\,d\tau }
.....(3)
在声纳 和雷达 系统中,传送出去的声波的反射波可以用来侦测目标物的位置跟速度,在很多情形下,收到的讯号因为都普勒位移 ,所以跟原本的讯号并不一样。Woodward(1953) 改写了原本的公式
A
x
(
t
,
ω
)
=
∫
−
∞
∞
x
(
τ
+
t
2
)
x
∗
(
τ
−
t
2
)
e
−
j
ω
τ
d
τ
{\displaystyle A_{x}(t,\omega )=\int _{-\infty }^{\infty }x(\tau +{\frac {t}{2}})x^{*}(\tau -{\frac {t}{2}})e^{-j\omega \tau }\,d\tau }
这个公式被称为Woodward ambiguity function,这个式子在雷达系统的讯号处理和设计上扮演重要的角色。
而维格纳分布亦为科恩系列分布 的其中一种特例,当科恩系列分布中的
Φ
(
η
,
τ
)
=
1
{\displaystyle \Phi (\eta ,\tau )=1}
时,科恩系列分布会是维格纳分布。
WDF、STFT和Gabor transform 都占了时频分析中非常重要的地位,在这边比较一下它们之间的差别。
WDF
STFT
清晰度
较好
较差
相交项的问题
严重
无
复杂度
高
低
处理随机程序
可
不可
相交项其实就是处理的过程中产生的额外讯号,是不想要的,WDF的清晰度和复杂度是彼此做取舍的,可以依不同的情况或是不同的方法来决定是否要使用WDF或是另外两种。
在这里列出WDF主要的优缺点
优点 :
1.有良好的解析度,尤其是对单一成分,且瞬时频率变化不为2次式以上。
2.有好的数学运算性质(见WDF的数学性质)。
3.可用于分析随机程序(见WDF与随机程序的关系)。
缺点 :
1.有相交项(cross term)的问题,改进方法请见 改进型韦格纳分布 。
2.需要更多的时间去计算,若讯号时间越长,则需要更久的时间。
3.不是一对一函数,无法辨别相位部分,例如:
W
D
F
[
x
(
t
)
]
=
W
D
F
[
x
(
t
)
e
j
ϕ
]
{\displaystyle WDF[x(t)]=WDF[x(t){e^{j\phi }}]}
4.不适合分析瞬时频率变化为2次式以上的型态,即
e
j
t
n
,
n
≠
0
,
1
,
2
{\displaystyle {e^{j{t^{n}}}},n\neq 0,1,2}
。
WDF不是一个线性的转换,由于
x
(
t
)
{\displaystyle x(t)}
的signal auto-correlation function
x
(
t
+
τ
2
)
x
∗
(
t
−
τ
2
)
{\displaystyle x(t+{\frac {\tau }{2}})x^{*}(t-{\frac {\tau }{2}})}
,如果有两种以上不同性质的讯号叠加,会产生相交项。然而相交项却有重要且有用的物理意义,像是可以用来分析期望值,相反的,短时距傅立叶转换就没有此特性,详见维格纳分布与随机程序的关系。以下数学方程式对于WDF后会产生相交项。
x
(
t
)
=
{
cos
(
2
π
t
)
t
≤
−
2
cos
(
4
π
t
)
−
2
<
t
≤
2
cos
(
3
π
t
)
t
>
2
{\displaystyle x(t)={\begin{cases}\cos(2\pi t)&t\leq -2\\\cos(4\pi t)&-2<t\leq 2\\\cos(3\pi t)&t>2\end{cases}}}
x
(
t
)
=
e
i
t
3
{\displaystyle x(t)=e^{it^{3}}}
WDF与随机程序的关系
对于一个随机程序x(t),我们无法得知其确切的值,因此会将其值表示为一个机率函数,通常E[x(t)] = 0 for any t
将x(t)的维格纳分布取期望值后可得其谱密度(Power spectral density,PSD),如下公式所列
E
[
W
x
(
t
,
f
)
]
=
∫
−
∞
∞
E
[
x
(
t
+
τ
/
2
)
x
∗
(
t
−
τ
/
2
)
]
⋅
e
−
j
2
π
f
τ
⋅
d
τ
{\displaystyle E[W_{x}(t,f)]=\textstyle \int \limits _{-\infty }^{\infty }\displaystyle E[x(t+\tau /2)x^{*}(t-\tau /2)]\cdot e^{-j2\pi f\tau }\cdot d\tau }
=
∫
−
∞
∞
R
x
(
t
,
τ
)
⋅
e
−
j
2
π
f
τ
⋅
d
τ
=
S
x
(
t
,
f
)
{\displaystyle =\textstyle \int \limits _{-\infty }^{\infty }\displaystyle R_{x}(t,\tau )\cdot e^{-j2\pi f\tau }\cdot d\tau =S_{x}(t,f)}
当x(t)的统计特性不随时间变化时,可称x(t)为平稳的随机程序,其谱密度也可简化为
E
[
W
x
(
t
,
f
)
]
=
S
x
(
f
)
{\displaystyle E[W_{x}(t,f)]=S_{x}(f)}
,也就是说维格纳函数能初略的告诉我们谱密度如何随时间进行变化。维格纳函数能在平稳程序对所有时间t都简化成谱密度,然而也等同于非平稳的自相关函数,这也是维格纳分布的动机。
下图为一个平稳的随机程序进行维格纳分析后的例子,可明显看出此信号不随时间变化,也就是时频分析结果为水平线。反之,亦可利用时频分析结果是否为水平线判断该讯号是否为一平稳的讯号。
而在讯号处理中常见的白杂讯 ,其谱密度
S
x
(
f
)
=
σ
{\displaystyle S_{x}(f)=\sigma }
,其中
σ
{\displaystyle \sigma }
为一个常数。白杂讯的维格纳分布如下图,可看出此杂讯在所有时间及频率都存在著。
维格纳分布的相交项在处理随机程序时派上用场,相对的,没有相交项的短时距傅立叶转换,则无法用于随机程序,如下公式所示,只有在零平均随机程序时,
E
[
X
(
t
,
f
)
]
=
0
{\displaystyle E[X(t,f)]=0}
E
[
X
(
t
,
f
)
]
=
E
[
∫
t
−
B
t
+
B
x
(
τ
)
w
(
t
−
τ
)
e
−
j
2
π
f
τ
d
τ
]
=
∫
t
−
B
t
+
B
E
[
x
(
τ
)
]
w
(
t
−
τ
)
e
−
j
2
π
f
τ
d
τ
{\displaystyle E[X(t,f)]=E[\textstyle \int \limits _{t-B}^{t+B}\displaystyle x(\tau )w(t-\tau )e^{-j2\pi f\tau }d\tau ]=\textstyle \int \limits _{t-B}^{t+B}\displaystyle E[x(\tau )]w(t-\tau )e^{-j2\pi f\tau }d\tau }
以下的例子说明如何用WDF来做时频分析
输入讯号为常数,则时频分布为一条线重合于时轴,如果'x( t) = 1,则:
W
x
(
t
,
f
)
=
∫
−
∞
∞
e
−
i
2
π
τ
f
d
τ
=
δ
(
f
)
.
{\displaystyle W_{x}(t,f)=\int _{-\infty }^{\infty }e^{-i2\pi \tau \,f}\,d\tau =\delta (f).}
输入讯号为弦波,则时频分布为一条线平行于时轴,如果x (t ) = e i2πkt ,则:
W
x
(
t
,
f
)
=
∫
−
∞
∞
e
i
2
π
k
(
t
+
τ
2
)
e
−
i
2
π
k
(
t
−
τ
2
)
e
−
i
2
π
τ
f
d
τ
=
∫
−
∞
∞
e
−
i
2
π
τ
(
f
−
k
)
d
τ
=
δ
(
f
−
k
)
.
{\displaystyle {\begin{aligned}W_{x}(t,f)&=\int _{-\infty }^{\infty }e^{i2\pi k\left(t+{\frac {\tau }{2}}\right)}e^{-i2\pi k\left(t-{\frac {\tau }{2}}\right)}e^{-i2\pi \tau \,f}\,d\tau \\&=\int _{-\infty }^{\infty }e^{-i2\pi \tau \left(f-k\right)}\,d\tau \\&=\delta (f-k).\end{aligned}}}
啁啾声讯号的瞬时频率随时间线性,表示时频分布为一条斜值线,例如
x
(
t
)
=
e
i
2
π
k
t
2
{\displaystyle x(t)=e^{i2\pi kt^{2}}}
,
则瞬时频率为:
1
2
π
d
(
2
π
k
t
2
)
d
t
=
2
k
t
,
{\displaystyle {\frac {1}{2\pi }}{\frac {d(2\pi kt^{2})}{dt}}=2kt~,}
故WDF为:
W
x
(
t
,
f
)
=
∫
−
∞
∞
e
i
2
π
k
(
t
+
τ
2
)
2
e
−
i
2
π
k
(
t
−
τ
2
)
2
e
−
i
2
π
τ
f
d
τ
=
∫
−
∞
∞
e
i
4
π
k
t
τ
e
−
i
2
π
τ
f
d
τ
=
∫
−
∞
∞
e
−
i
2
π
τ
(
f
−
2
k
t
)
d
τ
=
δ
(
f
−
2
k
t
)
.
{\displaystyle {\begin{aligned}W_{x}(t,f)&=\int _{-\infty }^{\infty }e^{i2\pi k\left(t+{\frac {\tau }{2}}\right)^{2}}e^{-i2\pi k\left(t-{\frac {\tau }{2}}\right)^{2}}e^{-i2\pi \tau \,f}\,d\tau \\&=\int _{-\infty }^{\infty }e^{i4\pi kt\tau }e^{-i2\pi \tau f}\,d\tau \\&=\int _{-\infty }^{\infty }e^{-i2\pi \tau (f-2kt)}\,d\tau \\&=\delta (f-2kt)~.\end{aligned}}}
x(t) = cos(440
π
{\displaystyle \pi }
t), 当 t 小于 0.5, 频率 f = 220Hz
x(t) = cos(660
π
{\displaystyle \pi }
t), 当 0.5 小于等于 t 小于 1, 频率 f = 330Hz
x(t) = cos(524
π
{\displaystyle \pi }
t), 当 t 大于等于 1, 频率 f = 262Hz
因为单位脉冲包含所有的频率分布,且在时间不等于零时没值,故WDF为通过原点的且与时轴垂直的线
W
x
(
t
,
f
)
=
∫
−
∞
∞
δ
(
t
+
τ
2
)
δ
(
t
−
τ
2
)
e
−
i
2
π
τ
f
d
τ
=
4
∫
−
∞
∞
δ
(
2
t
+
τ
)
δ
(
2
t
−
τ
)
e
−
i
2
π
τ
f
d
τ
=
4
δ
(
4
t
)
e
i
4
π
t
f
=
δ
(
t
)
e
i
4
π
t
f
=
δ
(
t
)
.
{\displaystyle {\begin{aligned}W_{x}(t,f)&=\int _{-\infty }^{\infty }\delta \left(t+{\frac {\tau }{2}}\right)\delta \left(t-{\frac {\tau }{2}}\right)e^{-i2\pi \tau \,f}\,d\tau \\&=4\int _{-\infty }^{\infty }\delta (2t+\tau )\delta (2t-\tau )e^{-i2\pi \tau f}\,d\tau \\&=4\delta (4t)e^{i4\pi tf}\\&=\delta (t)e^{i4\pi tf}\\&=\delta (t).\end{aligned}}}
x
(
t
)
=
{
1
|
t
|
<
1
/
2
0
otherwise
{\displaystyle x(t)={\begin{cases}1&|t|<1/2\\0&{\text{otherwise}}\end{cases}}\qquad }
,
W
x
(
t
,
f
)
=
1
π
f
sin
(
f
[
1
−
2
|
t
|
]
)
{\displaystyle W_{x}(t,f)={\frac {1}{\pi f}}\sin(f[1-2|t|])}
.
(1)投射特性
|
x
(
t
)
|
2
=
∫
−
∞
∞
W
x
(
t
,
f
)
d
f
{\displaystyle |x(t)|^{2}=\int _{-\infty }^{\infty }W_{x}(t,f)\,df}
,
|
X
(
f
)
|
2
=
∫
−
∞
∞
W
x
(
t
,
f
)
d
t
{\displaystyle |X(f)|^{2}=\int _{-\infty }^{\infty }W_{x}(t,f)\,dt}
(2)能量特性
|
x
(
t
)
|
2
=
∬
−
∞
∞
W
x
(
t
,
f
)
d
t
d
f
=
∫
−
∞
∞
|
x
(
t
)
|
2
d
t
=
∫
−
∞
∞
|
X
(
f
)
|
2
d
f
{\displaystyle |x(t)|^{2}=\iint _{-\infty }^{\infty }W_{x}(t,f)\,dt\,df=\int _{-\infty }^{\infty }|x(t)|^{2}\,dt=\int _{-\infty }^{\infty }|X(f)|^{2}\,df}
(3)回复特性
∫
−
∞
∞
W
x
(
t
2
,
f
)
e
j
2
π
f
t
d
f
=
x
(
t
)
∙
x
∗
(
0
)
{\displaystyle \int _{-\infty }^{\infty }W_{x}({\frac {t}{2}},f)e^{j2\pi ft}\,df=x(t)\bullet x^{*}(0)}
,
∫
−
∞
∞
W
x
(
t
,
f
2
)
e
−
j
2
π
f
t
d
t
=
X
(
f
)
∙
X
∗
(
0
)
{\displaystyle \int _{-\infty }^{\infty }W_{x}(t,{\frac {f}{2}})e^{-j2\pi ft}\,dt=X(f)\bullet X^{*}(0)}
(4)Mean 条件
If
x
(
t
)
=
|
x
(
t
)
|
e
j
2
π
ϕ
(
t
)
,
X
(
f
)
=
|
X
(
f
)
|
e
j
2
π
Ψ
(
f
)
{\displaystyle x(t)=\left\vert x(t)\right\vert e^{j2\pi \phi (t)},\ X(f)=\left\vert X(f)\right\vert e^{j2\pi \Psi (f)}}
then
ϕ
′
(
t
)
=
|
x
(
t
)
|
−
2
∫
−
∞
∞
f
×
W
x
(
t
,
f
)
d
f
{\displaystyle \phi '(t)={\left\vert x(t)\right\vert }^{-2}\textstyle \int \limits _{-\infty }^{\infty }\displaystyle f\times W_{x}(t,f)\ df}
,
−
Ψ
′
(
f
)
=
|
X
(
f
)
|
−
2
∫
−
∞
∞
t
×
W
x
(
t
,
f
)
d
t
{\displaystyle -\Psi '(f)={\left\vert X(f)\right\vert }^{-2}\textstyle \int \limits _{-\infty }^{\infty }\displaystyle t\times W_{x}(t,f)\ dt}
(5)Moment特性
∬
−
∞
∞
t
n
W
x
(
t
,
f
)
d
t
d
f
=
∫
−
∞
∞
t
n
|
x
(
t
)
|
2
d
t
{\displaystyle \iint _{-\infty }^{\infty }t^{n}W_{x}(t,f)\,dt\,df=\int _{-\infty }^{\infty }t^{n}|x(t)|^{2}\,dt}
,
∬
−
∞
∞
f
n
W
x
(
t
,
f
)
d
t
d
f
=
∫
−
∞
∞
f
n
|
X
(
f
)
|
2
d
t
{\displaystyle \iint _{-\infty }^{\infty }f^{n}W_{x}(t,f)\,dt\,df=\int _{-\infty }^{\infty }f^{n}|X(f)|^{2}\,dt}
(6)
W
x
(
t
,
f
)
{\displaystyle W_{x}(t,f)}
是实数
W
x
(
t
,
f
)
¯
=
W
x
(
t
,
f
)
{\displaystyle {\overline {W_{x}(t,f)}}=W_{x}(t,f)}
(7)区域特性
If
x
(
t
)
=
0
{\displaystyle x(t)=0}
for
t
>
t
0
{\displaystyle t>t_{0}}
then
W
x
(
t
,
f
)
=
0
{\displaystyle W_{x}(t,f)=0}
for
t
>
t
0
{\displaystyle t>t_{0}}
, If
x
(
t
)
=
0
{\displaystyle x(t)=0}
for
t
<
t
0
{\displaystyle t<t_{0}}
then
W
x
(
t
,
f
)
=
0
{\displaystyle W_{x}(t,f)=0}
for
t
<
t
0
{\displaystyle t<t_{0}}
(8)乘法特性
If
y
(
t
)
=
x
(
t
)
h
(
t
)
{\displaystyle y(t)=x(t)h(t)}
,then
W
y
(
t
,
f
)
=
∫
−
∞
∞
W
x
(
t
,
ρ
)
W
h
(
t
−
ρ
,
f
)
d
ρ
{\displaystyle W_{y}(t,f)=\int _{-\infty }^{\infty }W_{x}(t,\rho )W_{h}(t-\rho ,f)\,d\rho }
(9)折积特性
If
y
(
t
)
=
∫
−
∞
∞
x
(
t
−
τ
)
h
(
τ
)
d
τ
{\displaystyle y(t)=\int _{-\infty }^{\infty }x(t-\tau )h(\tau )\,d\tau }
,then
W
y
(
t
,
f
)
=
∫
−
∞
∞
W
x
(
ρ
,
f
)
W
h
(
t
−
ρ
,
f
)
d
ρ
{\displaystyle W_{y}(t,f)=\int _{-\infty }^{\infty }W_{x}(\rho ,f)W_{h}(t-\rho ,f)\,d\rho }
(10)相关特性
If
y
(
t
)
=
∫
−
∞
∞
x
(
t
+
τ
)
h
∗
(
τ
)
d
τ
{\displaystyle y(t)=\int _{-\infty }^{\infty }x(t+\tau )h^{*}(\tau )\,d\tau }
,then
W
y
(
t
,
ω
)
=
∫
−
∞
∞
W
x
(
ρ
,
ω
)
W
h
(
−
t
+
ρ
,
ω
)
d
ρ
{\displaystyle W_{y}(t,\omega )=\int _{-\infty }^{\infty }W_{x}(\rho ,\omega )W_{h}(-t+\rho ,\omega )\,d\rho }
(11)时间平移特性
If
y
(
t
)
=
x
(
t
−
t
0
)
{\displaystyle y(t)=x(t-t_{0})}
, then
W
y
(
t
,
f
)
=
W
x
(
t
−
t
0
,
f
)
{\displaystyle W_{y}(t,f)=W_{x}(t-t_{0},f)}
(12)调变特性
If
y
(
t
)
=
e
j
2
π
f
0
t
x
(
t
)
{\displaystyle y(t)=e^{j2\pi f_{0}t}x(t)}
, then
W
y
(
t
,
f
)
=
W
x
(
t
,
f
−
f
0
)
{\displaystyle W_{y}(t,f)=W_{x}(t,f-f_{0})}
WDF满足永远是实数的性质,以下是证明:
W
x
(
t
,
f
)
=
∫
−
∞
∞
x
(
t
+
τ
2
)
x
∗
(
t
−
τ
2
)
e
−
j
2
π
f
τ
d
τ
{\displaystyle W_{x}(t,f)=\int _{-\infty }^{\infty }x(t+{\frac {\tau }{2}})x^{*}(t-{\frac {\tau }{2}})e^{-j2\pi f\tau }d\tau }
W
x
(
t
,
f
)
¯
=
∫
−
∞
∞
x
∗
(
t
+
τ
2
)
x
(
t
−
τ
2
)
e
j
2
π
f
τ
d
τ
{\displaystyle {\overline {W_{x}(t,f)}}=\int _{-\infty }^{\infty }x^{*}(t+{\frac {\tau }{2}})x(t-{\frac {\tau }{2}})e^{j2\pi f\tau }d\tau }
令
τ
′
=
−
τ
{\displaystyle \tau ^{\prime }=-\tau }
代入,变数乘上负号,因此积分范围会变成
∞
{\displaystyle {\infty }}
到
−
∞
{\displaystyle {-\infty }}
W
x
(
t
,
f
)
¯
=
∫
∞
−
∞
x
∗
(
t
−
τ
′
2
)
x
(
t
+
τ
′
2
)
e
−
j
2
π
f
τ
′
(
−
d
τ
′
)
=
−
∫
∞
−
∞
x
∗
(
t
−
τ
′
2
)
x
(
t
+
τ
′
2
)
e
−
j
2
π
f
τ
′
d
τ
′
=
∫
−
∞
∞
x
(
t
+
τ
′
2
)
x
∗
(
t
−
τ
′
2
)
e
−
j
2
π
f
τ
′
=
W
x
(
t
,
f
)
{\displaystyle {\begin{aligned}{\overline {W_{x}(t,f)}}&=\int _{\infty }^{-\infty }x^{*}(t-{\frac {\tau ^{\prime }}{2}})x(t+{\frac {\tau ^{\prime }}{2}})e^{-j2\pi f\tau ^{\prime }}(-d\tau ^{\prime })\\&=-\int _{\infty }^{-\infty }x^{*}(t-{\frac {\tau ^{\prime }}{2}})x(t+{\frac {\tau ^{\prime }}{2}})e^{-j2\pi f\tau ^{\prime }}d\tau ^{\prime }\\&=\int _{-\infty }^{\infty }x(t+{\frac {\tau ^{\prime }}{2}})x^{*}(t-{\frac {\tau ^{\prime }}{2}})e^{-j2\pi f\tau ^{\prime }}\\&=W_{x}(t,f)\end{aligned}}}
故WDF永远是实数
以下为电脑计算WDF的实现方式
直接运算(暴力法) 复杂度:
T
F
(
2
Q
+
1
)
{\displaystyle TF(2Q+1)}
使用离散傅立叶变换 复杂度:
T
N
log
2
N
{\displaystyle TN{\log _{2}}N}
使用Chirp-Z 转换 复杂度 :
T
N
log
2
N
{\displaystyle TN{\log _{2}}N}
,通常为使用离散傅立叶变换 的2~3倍,但限制比使用离散傅立叶变换 少
在使用这三个方法前,先来做个前提讨论
从定义一出发
W
x
(
t
,
f
)
=
∫
−
∞
∞
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau }
令
τ
′
=
τ
/
2
{\displaystyle \tau '=\tau /2}
W
x
(
t
,
f
)
=
2
∫
−
∞
∞
x
(
t
+
τ
′
)
⋅
x
∗
(
t
−
τ
′
)
e
−
j
4
π
τ
′
f
⋅
d
τ
′
{\displaystyle {W_{x}}\left({t,f}\right)=2\int _{-\infty }^{\infty }{x\left({t+\tau '}\right)\cdot }{x^{*}}\left({t-\tau '}\right)\,{e^{-j4\pi \,\tau '\,f}}\cdot d\tau '}
再令
t
=
n
Δ
t
,
f
=
m
Δ
f
,
τ
′
=
p
Δ
t
{\displaystyle t=n\Delta _{t},f=m\Delta _{f},\tau '=p\Delta _{t}}
,则上述式子则为
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
∑
p
=
−
∞
∞
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
exp
(
−
j
4
π
m
p
Δ
t
Δ
f
)
Δ
t
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2\sum \limits _{p=-\infty }^{\infty }{x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right)\exp \left({-j4\pi \,mp{\Delta _{t}}{\Delta _{f}}}\right){\Delta _{t}}}}
下面介绍的三种方法都是从这条式子开始推导
注意事项 :
若x(t)是无限长的讯号,则p要从负无限加到正无限,这点不易实现。
若x(t)为有限长的讯号,则p范围可以缩小,就可能实现。
故下面三种方法都是在第2种情况下讨论,即x(t)为有限长讯号,p范围可以缩小
我们假设
x
(
t
)
=
0
f
o
r
t
<
n
1
Δ
t
a
n
d
t
>
n
2
Δ
t
{\displaystyle \ x(t)=0\ \ for\ \ t<n_{1}\Delta _{t}\ \ and\ \ t>n_{2}\Delta _{t}}
限制条件 :
只有一个 : 要满足Nyquist criterion
Δ
t
<
1
2
B
{\displaystyle {\Delta _{t}}<{\frac {1}{2B}}}
,其中B是
x
(
t
+
τ
)
x
∗
(
t
−
τ
)
{\displaystyle x\left({t+\tau }\right){x^{*}}\left({t-\tau }\right)\,}
的频宽,大约是x(t)的两倍。
推导 :
x
(
t
)
=
0
f
o
r
t
<
n
1
Δ
t
a
n
d
t
>
n
2
Δ
t
{\displaystyle \ x(t)=0\ \ for\ \ t<n_{1}\Delta _{t}\ \ and\ \ t>n_{2}\Delta _{t}}
所以当
n
+
p
∉
[
n
1
,
n
2
]
o
r
n
−
p
∉
[
n
1
,
n
2
]
{\displaystyle n+p\notin [{n_{1}},{n_{2}}]{\rm {orn-p}}\notin {\rm {[}}{n_{1}},{n_{2}}{\rm {]}}}
时,
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
=
0
{\displaystyle x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right)=0}
固定中间的n值 (
n
Δ
t
{\displaystyle n\Delta _{t}}
) 来探讨p的范围
n
1
≤
n
+
p
≤
n
2
→
n
1
−
n
≤
p
≤
n
2
−
n
{\displaystyle {n_{1}}\leq n+p\leq {n_{2}}\to {n_{1}}-n\leq p\leq {n_{2}}-n}
即
max
(
n
1
−
n
,
n
−
n
2
)
≤
p
≤
min
(
n
2
−
n
,
n
−
n
1
)
{\displaystyle \max({n_{1}}-n,n-{n_{2}})\leq p\leq \min({n_{2}}-n,n-{n_{1}})}
-– (1)
n
1
≤
n
−
p
≤
n
2
→
n
1
−
n
≤
−
p
≤
n
2
−
n
→
n
−
n
2
≤
p
≤
n
−
n
1
{\displaystyle {n_{1}}\leq n-p\leq {n_{2}}\to {\rm {}}{{\rm {n}}_{1}}-n\leq -p\leq {n_{2}}-n\to n-{n_{2}}\leq p\leq n-{n_{1}}}
即
−
min
(
n
2
−
n
,
n
−
n
1
)
≤
p
≤
min
(
n
2
−
n
,
n
−
n
1
)
{\displaystyle -\min({n_{2}}-n,n-{n_{1}})\leq p\leq \min({n_{2}}-n,n-{n_{1}})}
-- (2)
其中 (1) & (2) 的下限是同义的
故(1) & (2)皆可改写为
−
min
(
n
2
−
n
,
n
−
n
1
)
≤
p
≤
min
(
n
2
−
n
,
n
−
n
1
)
{\displaystyle -\min({n_{2}}-n,n-{n_{1}})\leq p\leq \min({n_{2}}-n,n-{n_{1}})}
且可以发现
(
n
2
−
n
)
Δ
t
,
(
n
−
n
1
)
Δ
t
{\displaystyle ({n_{2}}-n){\Delta _{t}},(n-{n_{1}}){\Delta _{t}}}
代表
n
Δ
t
{\displaystyle n\Delta _{t}}
离两个边界的距离
注意事项: 当 n > n2 或 n < n1 时,将没有 p 能满足上面的不等式
最后推导出的式子如下
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
∑
p
=
−
Q
Q
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
exp
(
−
j
4
π
m
p
Δ
t
Δ
f
)
Δ
t
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2\sum \limits _{p=-Q}^{Q}{x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right)\exp \left({-j4\pi \,mp{\Delta _{t}}{\Delta _{f}}}\right){\Delta _{t}}}}
其中
Q
=
min
(
n
2
−
n
,
n
−
n
1
)
,
p
∈
[
−
Q
,
Q
]
,
n
∈
[
n
1
,
n
2
]
{\displaystyle Q=\min({n_{2}}-n,n-{n_{1}})\,,p\in [-Q,Q],n\in [{n_{1}},{n_{2}}]}
限制条件 :
(1)要满足Nyquist criterion
Δ
t
<
1
2
B
{\displaystyle {\Delta _{t}}<{\frac {1}{2B}}}
,其中B是
x
(
t
+
τ
)
x
∗
(
t
−
τ
)
{\displaystyle x\left({t+\tau }\right){x^{*}}\left({t-\tau }\right)\,}
的频宽,大约是x(t)的两倍。
(2)
Δ
t
Δ
f
=
1
2
N
{\displaystyle {\Delta _{t}}{\Delta _{f}}={\textstyle {1 \over {2N}}}}
(3)
N
≥
2
Q
+
1
{\displaystyle N\geq 2Q+1}
推导 :
前提讨论的式子可以改写为
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
Δ
t
∑
p
=
−
Q
Q
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
e
−
j
2
π
m
p
N
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2{\Delta _{t}}\sum \limits _{p=-Q}^{Q}{x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right){e^{-j{\textstyle {{2\pi \,mp} \over N}}}}}}
令
q
=
p
+
Q
→
p
=
q
−
Q
{\displaystyle q=p+Q\to p=q-Q}
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
Δ
t
e
j
2
π
m
Q
N
∑
q
=
0
2
Q
x
(
(
n
+
q
−
Q
)
Δ
t
)
x
∗
(
(
n
−
q
+
Q
)
Δ
t
)
e
−
j
2
π
m
q
N
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2{\Delta _{t}}{e^{j{\textstyle {{2\pi \,mQ} \over N}}}}\sum \limits _{q=0}^{2Q}{x\left({(n+q-Q){\Delta _{t}}}\right){x^{*}}\left({(n-q+Q){\Delta _{t}}}\right){e^{-j{\textstyle {{2\pi \,mq} \over N}}}}}}
针对中间
x
(
(
n
+
q
−
Q
)
Δ
t
)
x
∗
(
(
n
−
q
+
Q
)
Δ
t
)
{\displaystyle x\left({(n+q-Q){\Delta _{t}}}\right){x^{*}}\left({(n-q+Q){\Delta _{t}}}\right)}
项
令
c
1
(
q
)
=
x
(
(
n
+
q
−
Q
)
Δ
t
)
x
∗
(
(
n
−
q
+
Q
)
Δ
t
)
,
f
o
r
0
≤
q
≤
2
Q
{\displaystyle {c_{1}}\left(q\right)=x\left({(n+q-Q){\Delta _{t}}}\right){x^{*}}\left({(n-q+Q){\Delta _{t}}}\right){\rm {}},for{\rm {0}}\leq q\leq 2{\rm {Q}}}
c
1
(
q
)
=
0
,
f
o
r
2
Q
+
1
≤
q
≤
N
−
1
{\displaystyle {c_{1}}\left(q\right)=0{\rm {}}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad ,for{\rm {2}}Q+1\leq q\leq N-1}
最后得出的式子如下
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
Δ
t
e
j
2
π
m
Q
N
∑
q
=
0
N
−
1
c
1
(
q
)
e
−
j
2
π
m
q
N
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2{\Delta _{t}}{e^{j{\textstyle {{2\pi \,mQ} \over N}}}}\sum \limits _{q=0}^{N-1}{{c_{1}}\left(q\right){e^{-j{\textstyle {{2\pi \,mq} \over N}}}}}}
其中
Q
=
min
(
n
2
−
n
,
n
−
n
1
)
,
n
∈
[
n
1
,
n
2
]
{\displaystyle Q=\min({n_{2}}-n,n-{n_{1}})\,,n\in [{n_{1}},{n_{2}}]}
c
1
(
q
)
=
x
(
(
n
+
q
−
Q
)
Δ
t
)
x
∗
(
(
n
−
q
+
Q
)
Δ
t
)
,
f
o
r
0
≤
q
≤
2
Q
{\displaystyle {c_{1}}\left(q\right)=x\left({(n+q-Q){\Delta _{t}}}\right){x^{*}}\left({(n-q+Q){\Delta _{t}}}\right){\rm {}},for{\rm {0}}\leq q\leq 2{\rm {Q}}}
c
1
(
q
)
=
0
,
f
o
r
2
Q
+
1
≤
q
≤
N
−
1
{\displaystyle {c_{1}}\left(q\right)=0{\rm {}}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad ,for{\rm {2}}Q+1\leq q\leq N-1}
限制条件 :
只有一个 : 要满足Nyquist criterion
Δ
t
<
1
2
B
{\displaystyle {\Delta _{t}}<{\frac {1}{2B}}}
,其中B是
x
(
t
+
τ
)
x
∗
(
t
−
τ
)
{\displaystyle x\left({t+\tau }\right){x^{*}}\left({t-\tau }\right)\,}
的频宽,大约是x(t)的两倍。
推导 :
前提讨论的式子可改写为
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
Δ
t
e
−
j
2
π
m
2
Δ
t
Δ
f
∑
p
=
−
Q
Q
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
e
−
j
2
π
p
2
Δ
t
Δ
f
e
j
2
π
(
p
−
m
)
2
Δ
t
Δ
f
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2{\Delta _{t}}\,{e^{-j2\pi \,{m^{2}}{\Delta _{t}}{\Delta _{f}}}}\sum \limits _{p=-Q}^{Q}{x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right){e^{-j2\pi \,{p^{2}}{\Delta _{t}}{\Delta _{f}}}}{e^{j2\pi \,{{(p-m)}^{2}}{\Delta _{t}}{\Delta _{f}}}}}}
计算分成3步骤
STEP 1 :
x
1
(
n
,
p
)
=
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
e
−
j
2
π
p
2
Δ
t
Δ
f
{\displaystyle {x_{1}}\left({n,p}\right)=x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right){e^{-j2\pi \,{p^{2}}{\Delta _{t}}{\Delta _{f}}}}}
STEP 2 :
X
2
[
n
,
m
]
=
∑
p
=
n
−
Q
n
+
Q
x
1
[
p
]
c
[
m
−
p
]
{\displaystyle {X_{2}}\left[{n,m}\right]=\sum \limits _{p=n-Q}^{n+Q}{{x_{1}}\left[p\right]\,c\left[{m-p}\right]}}
, 其中
c
[
m
]
=
e
j
2
π
m
2
Δ
t
Δ
f
{\displaystyle c\left[m\right]={e^{j2\pi \,{m^{2}}{\Delta _{t}}{\Delta _{f}}}}}
STEP 3 :
X
(
n
Δ
t
,
m
Δ
f
)
=
2
Δ
t
e
−
j
2
π
m
2
Δ
t
Δ
f
X
2
[
n
,
m
]
{\displaystyle X\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2{\Delta _{t}}\,{e^{-j2\pi \;{m^{2}}{\Delta _{t}}{\Delta _{f}}}}{X_{2}}\left[{n,m}\right]}
视窗型韦格纳分布 (Windowed Wigner Distribution Function ),在韦格纳分布 中,当x(t)为无限长讯号时,WDF很难去实现它。所以在积分中加入一个新的函数 ,目的是撷取x(t)中的片段来计算,不需从负无限积分到正无限。
W
x
(
t
,
f
)
=
∫
−
∞
∞
w
(
τ
)
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{w\left(\tau \right)x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau }
, 其中
w
(
τ
)
{\displaystyle w(\tau )}
为实数且为有限长讯号
原始韦格纳分布 定义
W
x
(
t
,
f
)
=
∫
−
∞
∞
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau }
降低运算时间,因为
w
(
τ
)
{\displaystyle w(\tau )}
为有限长函数。
可以有效降低相交项(cross term)问题,但不能完全消除(详见下方说明)。
一些相交项(cross term)问题仍被保留。
可能不符合谱密度 (Power spectral density)的定义。
一些好用的数学运算性质会消失。
从定义出发
W
x
(
t
,
f
)
=
∫
−
∞
∞
w
(
τ
)
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{w\left(\tau \right)x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau }
令
τ
=
τ
′
/
2
{\displaystyle \tau =\tau '/2}
W
x
(
t
,
f
)
=
2
∫
−
∞
∞
w
(
2
τ
′
)
x
(
t
+
τ
′
)
⋅
x
∗
(
t
−
τ
′
)
e
−
j
4
π
τ
′
f
⋅
d
τ
′
{\displaystyle {W_{x}}\left({t,f}\right)=2\int _{-\infty }^{\infty }{w\left({2\tau '}\right)x\left({t+\tau '}\right)\cdot }{x^{*}}\left({t-\tau '}\right)\,{e^{-j4\pi \,\tau '\,f}}\cdot d\tau '}
再令
t
=
n
Δ
t
,
f
=
m
Δ
f
,
τ
′
=
p
Δ
t
{\displaystyle t=n\Delta _{t},f=m\Delta _{f},\tau '=p\Delta _{t}}
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
∑
p
=
−
∞
∞
w
(
2
p
Δ
t
)
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
e
−
j
4
π
m
p
Δ
t
Δ
f
Δ
t
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2\sum \limits _{p=-\infty }^{\infty }{w\left({2p{\Delta _{t}}}\right)x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right){e^{-j4\pi \,mp{\Delta _{t}}{\Delta _{f}}}}{\Delta _{t}}}}
假设w(t) = 0 for |t| > B
即
w
(
2
p
Δ
t
)
=
0
f
o
r
p
<
−
Q
∧
p
>
Q
{\displaystyle w\left({2p{\Delta _{t}}}\right)=0{\rm {}}\ for{\rm {}}\ p<-Q{\rm {}}\ \land \ p>Q}
其中
Q
=
B
2
Δ
t
{\displaystyle Q={\frac {B}{2{\Delta _{t}}}}}
如此一来,p范围便可缩小。
W
x
(
n
Δ
t
,
m
Δ
f
)
=
2
∑
p
=
−
Q
Q
w
(
2
p
)
x
(
(
n
+
p
)
Δ
t
)
x
∗
(
(
n
−
p
)
Δ
t
)
e
−
j
4
π
m
p
Δ
t
Δ
f
Δ
t
{\displaystyle {W_{x}}\left({n{\Delta _{t}},m{\Delta _{f}}}\right)=2\sum \limits _{p=-Q}^{Q}{w\left({2p}\right)x\left({(n+p){\Delta _{t}}}\right){x^{*}}\left({(n-p){\Delta _{t}}}\right){e^{-j4\pi \,mp{\Delta _{t}}{\Delta _{f}}}}{\Delta _{t}}}}
从定义出发
W
x
(
t
,
f
)
=
∫
−
∞
∞
w
(
τ
)
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{w\left(\tau \right)x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau }
,其中
w
(
τ
)
{\displaystyle w(\tau )}
为实数且为有限长讯号
假设
x
(
t
)
=
δ
(
t
−
t
1
)
+
δ
(
t
−
t
2
)
{\displaystyle x(t){\rm {=}}\delta (t-{t_{1}})+\delta (t-{t_{2}})}
的情况下,比较有无mask function所产生的不同结果
x(t)示意图
理想情形 :
W
x
(
t
,
f
)
=
0
f
o
r
t
≠
t
1
,
t
2
{\displaystyle {W_{x}}(t,f){\rm {=0}}\ for{\rm {}}\ t\neq {t_{1}},{t_{2}}}
即mask function
w
(
τ
)
=
1
{\displaystyle w(\tau )=1}
W
x
(
t
,
f
)
=
∫
−
∞
∞
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
=
∫
−
∞
∞
[
δ
(
t
+
τ
2
−
t
1
)
+
δ
(
t
+
τ
2
−
t
2
)
]
⋅
[
δ
(
t
−
τ
2
−
t
1
)
+
δ
(
t
−
τ
2
−
t
2
)
]
e
−
j
2
π
τ
f
⋅
d
τ
=
4
∫
−
∞
∞
[
δ
(
τ
+
2
t
−
2
t
1
)
+
δ
(
τ
+
2
t
−
2
t
2
)
]
⏟
f
i
r
s
t
t
e
r
m
⋅
[
δ
(
τ
−
2
t
+
2
t
1
)
+
δ
(
τ
−
2
t
+
2
t
2
)
]
⏟
s
e
c
o
n
d
t
e
r
m
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {\begin{array}{l}{W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }{x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau \\=\int _{-\infty }^{\infty }{\left[{\delta \left({t+{\frac {\tau }{2}}-{t_{1}}}\right)+\delta \left({t+{\frac {\tau }{2}}-{t_{2}}}\right)}\right]\cdot }\left[{\delta \left({t-{\frac {\tau }{2}}-{t_{1}}}\right)+\delta \left({t-{\frac {\tau }{2}}-{t_{2}}}\right)}\right]{e^{-j2\pi \,\tau \,f}}\cdot d\tau \\=4\int _{-\infty }^{\infty }\underbrace {\left[{\delta \left({\tau +2t-2{t_{1}}}\right)+\delta \left({\tau +2t-2{t_{2}}}\right)}\right]} _{first\ term}\cdot \underbrace {\left[{\delta \left({\tau -2t+2{t_{1}}}\right)+\delta \left({\tau -2t+2{t_{2}}}\right)}\right]} _{second\ term}{e^{-j2\pi \,\tau \,f}}\cdot d\tau \end{array}}}
Wx(t,f)示意图
总共有3种情况要讨论,如下图,可见cross term在没有使用mask function时,无法被消除
ideal x(t)。Auto term 为自相关项。 Cross term为相交项
W
x
(
t
,
f
)
=
∫
−
∞
∞
w
(
τ
)
x
(
t
+
τ
/
2
)
⋅
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
τ
f
⋅
d
τ
=
4
∫
−
∞
∞
w
(
τ
)
[
δ
(
τ
+
2
t
−
2
t
1
)
+
δ
(
τ
+
2
t
−
2
t
2
)
]
⏟
f
i
r
s
t
t
e
r
m
⋅
[
δ
(
τ
−
2
t
+
2
t
1
)
+
δ
(
τ
−
2
t
+
2
t
2
)
]
⏟
s
e
c
o
n
d
t
e
r
m
e
−
j
2
π
τ
f
⋅
d
τ
{\displaystyle {\begin{array}{l}{W_{x}}\left({t,f}\right)=\int _{-\infty }^{\infty }w(\tau ){x\left({t+\tau /2}\right)\cdot }{x^{*}}\left({t-\tau /2}\right)\,{e^{-j2\pi \,\tau \,f}}\cdot d\tau \\=4\int _{-\infty }^{\infty }w(\tau )\underbrace {\left[{\delta \left({\tau +2t-2{t_{1}}}\right)+\delta \left({\tau +2t-2{t_{2}}}\right)}\right]} _{first\ term}\cdot \underbrace {\left[{\delta \left({\tau -2t+2{t_{1}}}\right)+\delta \left({\tau -2t+2{t_{2}}}\right)}\right]} _{second\ term}{e^{-j2\pi \,\tau \,f}}\cdot d\tau \end{array}}}
假设
w
(
τ
)
=
0
f
o
r
|
τ
|
>
B
>
0
{\displaystyle w(\tau )=0{\rm {}}\ for|\tau |>B>0}
,且
B
<
t
2
−
t
1
{\displaystyle B{\rm {<}}{{\rm {t}}_{2}}{\rm {-}}{{\rm {t}}_{1}}}
由于
w
(
τ
)
{\displaystyle w(\tau )}
只在-B到B有值,故乘上
w
(
τ
)
{\displaystyle w(\tau )}
就能去除相交项(Cross term),只保留下图中两条红线中间的区域,也就是Auto terms。
ideal x(t)。
但上述其实是理想的情况,x(t)为窄频信号Delta function
如果X(τ)宽度太宽或是有ripple的话,Cross term仍会有残留,示意图如下
non ideal x(t)。
蓝色线为X(τ)的讯号,若X(τ)的宽度太宽或是有ripple产生,就可能会跑进
w
(
τ
)
{\displaystyle w(\tau )}
的范围里面,进而导致无法完全滤除Cross term。
cross term 只有在讯号每个成分的宽度都小于2B,且时间差
t
2
−
t
1
{\displaystyle t_{2}-t_{1}}
都大于B时,才能被消除
此方法可以消除相交项(cross term)。
消除相交项(cross term)问题,在某些情况下比加伯转换拥有更好的清晰度。
Jian-Jiun Ding, Time frequency analysis and wavelet transform class note, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2018.
Jian-Jiun Ding, Time-frequency analysis and wavelet transform class note, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2021.
Jian-Jiun Ding, Time-frequency analysis and wavelet transform class note, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2023.