在集合論和數學的其他分支中,存在差集的兩種定義:相對差集(差集)和絕對差集(補集)。
若和是集合,則在中的相對差集(簡稱差集)是由所有屬於但不屬於的元素組成的集合。
在中的相對補集記為或。
形式上:
例如:
- 若是實數集合,是有理數集合,則為無理數集合。
下列命題給出一些相對補集同併集和交集等集合論運算相關的一些常用性質。
命題1:若是集合,則下列等式恆成立:
若給定全集,則在中的相對補集稱為的絕對差集(又稱為補集),記為,即:
(注意:根據ISO與中華人民共和國國家標準,中子集的補集記作。)
例如,若全集為自然數集合,則奇數集合的補集為偶數集合。
下列命題給出一些絕對補集同併集和交集等集合論運算相關的一些重要性質。
命題2:若和是全集的子集,則下列恆等式成立:
- 德摩根定律:
- 補集律:
- 對合:
- 相對補集和絕對補集的關係:
上述表明,若為的非空子集,則是的一個分割。
補集的符號在Unicode中為數學運算符區段中的「∁」(Unicode:U+2201)。