跳至內容

鉑族金屬

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
 → 8 9 10
↓ 週期
5 44
 Ru 
45
 Rh
46
 Pd 
6 76
 Os 
77
 Ir
78
 Pt 

鉑族金屬(英語:Platinum-group metals,簡稱PGMs),又稱鉑系金屬,是指元素週期表中位於第5第6週期8族9族10族(合稱ⅧB 族元素,位在3個鐵族元素的下方,包括第5週期的(Ru)、(Rh)、(Pd)和第6週期的(Os)、(Ir)、(Pt)。[1] 鉑族元素電子殼層的最外層都只有0到2個電子,但第二外層的3d電子數不同,分別為相差1,再加上它們具有相近的原子半徑,因此它們的物理和化學性質十分相似。鉑族元素均為銀白色、耐腐蝕的貴金屬。它們的熔點都很高,在1500以上,且化學性質穩定,不容易與或其他物質反應,因此鉑族金屬幾乎完全可以以單質狀態存在於自然界中,是除了11族外唯一在自然界中大量存在的自然金屬英語Native metal

鉑族金屬在地殼中存量頗低,且往往一同出現在同一礦床中。[2]在地質學上可以根據它們的地球化學行為將鉑族元素進一步細分為銥族鉑族元素(IPGEs:)和鈀族鉑族元素(PPGEs:)。[3]鉑族金屬在自然界中的主要礦石是以為主的鉑礦,以及少量的銥鋨礦英語Osmiridium等。

主要性質比較

[編輯]

 元素名稱 

元素符號

原子半徑nm

主要化合價

狀態(標況)

單質密度g/cm3

硬度(金剛石=10)

單質熔點

單質沸點(℃)

電負性鮑林標度

Ru 0.134 +3、+4 固體 12.45 6.5 2334 4150 2.20
Rh 0.134 +3、+4 固體 12.41 6.0 1964 3695 2.28
Pd 0.137 +2、+4 固體 12.023 4.75 1554.9 2963 2.20
Os 0.135 +4 固體 22.59 7.0 3033 5012 2.20
Ir 0.136 +3、+4 固體 22.56 6.5 2466 4428 2.20
Pt 0.139 +4 固體 21.45 4–4.5 1768.3 3825 2.28

存在

[編輯]
地球的上層大陸地殼中元素的相對豐度。可以發現地殼中豐度最低的元素主要為親鐵元素英語Goldschmidt classification(包括和六種鉑族元素),它們大多隨着沉降到地核深處,從而在地殼中極端稀有。至於由於容易形成揮發性氫化物並逸散到太空中,因此在地殼中的稀有程度和鉑族元素相當。

鉑族元素是地殼中豐度最低的一類元素(短壽命放射性元素除外),由於它們皆為高度親鐵英語Goldschmidt classification的元素,在地球形成之初大多以固溶體或熔融態的形式溶解在中,並和鐵、等沉入地核,因此在地殼中含量極端稀少,它們在含有大量鐵和鎳的流星體中的豐度反而相對較高(是其中最具代表性的例子,參見白堊紀—古近紀界線)。[4]

鉑族元素在礦床中可以以單質存在,也存在於各種礦物和天然合金中。[5][6]鉑族金屬的主要產地包括烏拉山脈北美洲南美洲南非等。[7][8][9][10]

用途

[編輯]

鉑族元素具有良好的催化性能,在工業上及化學實驗中被廣泛用作各類反應的催化劑[11][12][13][14]例如汽車催化轉換器中使用鉑、鈀和銠作為催化劑,該裝置可將汽車引擎產生的有害廢氣(如碳氫化合物氮氧化物一氧化碳等)轉化為為對人體無害的氣體(如氮氣氧氣二氧化碳等)。[15]鉑族金屬堅硬耐磨且高度抗氧化,因此適合作為珠寶首飾的材料或鍍層,以及鋼筆的筆尖材料等。鉑族金屬具有高度的抗腐蝕性、耐高溫性、硬度[16],是製作實驗室器材、電觸頭和電極電阻溫度計牙科器材等的理想材料。[17]

參考文獻

[編輯]
  1. ^ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; et al. Platinum group metals and compounds. Ullmann's Encyclopedia of Industrial Chemistry. Wiley. 2002. ISBN 3527306730. doi:10.1002/14356007.a21_075. 
  2. ^ Harris, D. C.; Cabri L. J. Nomenclature of platinum-group-element alloys; review and revision. The Canadian Mineralogist. 1991, 29 (2): 231–237. 
  3. ^ Rollinson, Hugh. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical. 1993. ISBN 0-582-06701-4. 
  4. ^ Richard J. Walker (2014), "Siderophile element constraints on the origin of the Moon"頁面存檔備份,存於互聯網檔案館), Philosophical Transactions of the Royal Society A, accessed 1 December 2015.
  5. ^ Mineral Profile: Platinum. British Geological Survey. September 2009 [6 February 2018]. 
  6. ^ Search Minerals By Chemistry - Platinum. www.mindat.org. [2018-02-08]. (原始內容存檔於2023-05-07). 
  7. ^ Xiao, Z.; Laplante, A. R. Characterizing and recovering the platinum group minerals—a review. Minerals Engineering. 2004, 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001. 
  8. ^ Platinum–Group Metals (PDF). U.S. Geological Survey, Mineral Commodity Summaries. January 2007 [2008-09-09]. (原始內容存檔 (PDF)於2017-07-09). 
  9. ^ Bardi, Ugo; Caporali, Stefano. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?. Minerals. 2014, 4 (2): 388–398. Bibcode:2014Mine....4..388B. doi:10.3390/min4020388可免費查閱. 
  10. ^ Chevalier, Patrick. Platinum Group Metals (PDF). Natural Resources Canada. [2008-10-17]. (原始內容 (PDF)存檔於2011-08-11). 
  11. ^ Delaude, Lionel and Noels, Alfred F. Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. 2005. ISBN 978-0471238966. doi:10.1002/0471238961.metanoel.a01.  |chapter=被忽略 (幫助)
  12. ^ Fürstner, Alois. Olefin Metathesis and Beyond. Angewandte Chemie International Edition. 2000, 39 (17): 3012–3043. PMID 11028025. doi:10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G. 
  13. ^ Cheung, H.; Tanke, R. S.; Torrence, G. P. Acetic acid. Ullmann's Encyclopedia of Industrial Chemistry. Wiley. 2000. doi:10.1002/14356007.a01_045 (英語). 
  14. ^ Krebs, Robert E. Platinum. The History and Use of our Earth's Chemical Elements. Greenwood Press. 1998: 124–127. ISBN 0-313-30123-9. 
  15. ^ Aruguete, Deborah M.; Wallace, Adam; Blakney, Terry; Kerr, Rose; Gerber, Galen; Ferko, Jacob. Palladium release from catalytic converter materials induced by road de-icer components chloride and ferrocyanide. Chemosphere. 2020, 245: 125578. Bibcode:2020Chmsp.245l5578A. PMID 31864058. S2CID 209440501. doi:10.1016/j.chemosphere.2019.125578. 
  16. ^ Hunt, L. B.; Lever, F. M. Platinum Metals: A Survey of Productive Resources to industrial Uses (PDF). Platinum Metals Review. 1969, 13 (4): 126–138 [2009-10-02]. (原始內容存檔 (PDF)於2008-10-29). 
  17. ^ Ravindra, Khaiwal; Bencs, László; Van Grieken, René. Platinum group elements in the environment and their health risk. Science of the Total Environment. 2004, 318 (1–3): 1–43. Bibcode:2004ScTEn.318....1R. PMID 14654273. doi:10.1016/S0048-9697(03)00372-3. hdl:2299/2030可免費查閱. 

參見

[編輯]