費希爾-柯爾莫哥洛夫方程
外觀
費希爾-柯爾莫哥洛夫方程是以英國統計學家羅納德·費希爾和俄國數學家安德雷·柯爾莫哥洛夫命名的非線性偏微分方程,常見於熱傳導、燃燒理論、生物學、生態學等領域。某些文獻[1][2]中又稱費希爾-柯爾莫哥洛夫方程為柯爾莫哥洛夫-彼得羅夫斯基-皮斯庫諾夫方程(Kolmogorov–Petrovsky–Piskunov equation),或KPP方程,費希爾-KPP方程。費希爾-柯爾莫哥洛夫方程是費希爾方程的推廣形式。費希爾-柯爾莫哥洛夫方程的基本形式為[注 1]:
通過重新定義時間的尺度,可以不失一般性地令參數 D 等於1,因此一些文章中直接將形如 稱為KPP方程[1][2]。其他形似KPP方程的,例如 [5] 和 [6] 被稱作「KPP型方程(KPP type equation)」或「費希爾-KPP型方程(Fisher-KPP type equation)」。
解析解
[編輯]形如 的KPP方程有以下解析解[3]:
其中,
行波圖
[編輯]利用Maple的TWSolutions軟件包,當m = 2時,可以得到如下的行波圖:
相關條目
[編輯]註釋
[編輯]- ^ Graham所著的《Traveling wave analysis of partial differential equations : numerical and analytical methods with MATLAB and Maple》一書中第八章提到的「Fisher–Kolmogorov Equation」實際上是第十章「Kolmogorov–Petrovskii–Piskunov Equation」(即下式)在 D = 1、a = 1、b = -1、m = q + 1 時的特殊情況。
參考文獻
[編輯]- ^ 1.0 1.1 Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. International Journal of Non-Linear Mechanics. 1996-05, 31 (3): 329–338 [2018-02-09]. doi:10.1016/0020-7462(95)00064-X.
- ^ 2.0 2.1 Unal, ARZU OGUN. On the Kolmogorov–Petrovskii–Piskunov equation (PDF). Commun. Fac. Sci. Univ. Ank. Ser. A1. 2013, 62 (1): 1-10 [2018-02-09]. (原始內容存檔 (PDF)於2018-06-02).
- ^ 3.0 3.1 Schiesser, Graham W. Griffiths, William E. Traveling wave analysis of partial differential equations : numerical and analytical methods with MATLAB and Maple. Amsterdam: Academic Press. 2011 [2018-02-09]. ISBN 0123846528.[失效連結]
- ^ Adomian, G. Fisher-Kolmogorov equation. Applied Mathematics Letters. 1995-03, 8 (2): 51–52. doi:10.1016/0893-9659(95)00010-N.
- ^ al.], Mark Freidlin...[et. Surveys in applied mathematics.. New York: Springer. 1995 [2018-02-09]. ISBN 978-1-4615-1991-1. (原始內容存檔於2019-12-02).
- ^ Cabre, Xavier; Coulon, Anne-Charline; Roquejoffre, Jean-Michel. Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. arXiv:1209.4809 [math]. 2012-09-21 [2018-02-09]. doi:10.1016/j.crma.2012.10.007. (原始內容存檔於2019-08-27).
延伸閱讀
[編輯]- 谷超豪 《孤立子理論中的達布變換及其幾何應用》 上海科學技術出版社
- 閻振亞著 《複雜非線性波的構造性理論及其應用》 科學出版社 2007年
- 李志斌編著 《非線性數學物理方程的行波解》 科學出版社
- 王東明著 《消去法及其應用》 科學出版社 2002
- 何青 王麗芬編著 《Maple 教程》 科學出版社 2010 ISBN 9787030177445
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759