洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程组。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。
19世纪后期建立了麦克斯韦方程组,标志着经典电动力学取得了巨大成功。然而麦克斯韦方程组在经典力学的伽利略变换下并不是协变的。
由麦克斯韦方程组可以得到电磁波的波动方程,由波动方程解出真空中的光速是一个常数。按照经典力学的时空观,这个结论应当只在某个特定的惯性参照系中成立,这个参照系就是以太。其它参照系中测量到的光速是以太中光速与观察者所在参照系相对以太参照系的速度的矢量叠加。然而1887年的迈克耳孙-莫雷实验测量不到地球相对于以太参照系的运动速度。1904年,洛伦兹提出了洛伦兹变换用于解释迈克耳孙-莫雷实验的结果。根据他的设想,观察者相对于以太以一定速度运动时,长度在运动方向上发生收缩,抵消了不同方向上的光速差异,这样就解释了迈克耳孙-莫雷实验的零结果。
洛伦兹提出洛伦兹变换是基于以太存在的前提的,然而以太被证实是不存在的,根据光速不变原理,相对于任何惯性参照系,光速都具有相同的数值。爱因斯坦据此提出了狭义相对论。在狭义相对论中,空间和时间并不相互独立,而是一个统一的四维时空整体,不同惯性参照系之间的变换关系式与洛伦兹变换在数学表达式上是一致的,即:
其中x、y、z、t分别是惯性坐标系Σ下的坐标和时间,x'、y'、z'、t'分别是惯性坐标系Σ'下的坐标和时间。v是Σ'坐标系相对于Σ坐标系的运动速度,方向沿x轴。
由狭义相对性原理,只需在上述洛伦兹变换中把v变成-v,x'、y'、z'、t'分别与v, x、y、z、t互换,就得到洛伦兹变换的反变换式:
洛伦兹变换是高速运动的宏观物体在不同惯性参照系之间进行时空坐标变换的基本规律。当相对速度v远远小于光速c时,洛伦兹变换退化为经典力学中的伽利略变换:
所以,狭义相对论与经典力学并不矛盾,狭义相对论将经典力学扩展到了宏观物体在一切运动速度下的普遍情况,经典力学只是相对论在低速时(v远远小于c)的近似情况。一般在处理运动速度不太高的物体时(如天体力学中计算行星的运行轨道),不需考虑到相对论效应,因为用相对论进行处理时计算往往变得非常繁琐,而结果与经典情况相差不大。当处理高速运动的物理时,比如高能加速器中的电子,则必须要考虑相对论效应对结果带来的修正。
在狭义相对论中,某一事件可以用带有四个参数的时空坐标(t,x,y,z)来描述,洛伦兹变换就是在不同惯性参考系中观察同一事件的时空坐标变换关系,并且是满足四维空间中时间间隔 s2:=c2t2-x2-y2-z2 不变的变换。如果将x、y、z记成x1、x2、x3,并且令:
那么洛伦兹变换可以写成如下的矩阵形式:
其中
- , 被称为洛伦兹因子。
相对原则和光速不变的物理原则是狭义相对论通常的出发点(例:爱因斯坦最初对洛伦兹变换的推导)。实际上洛伦兹变换并不取决于光的物理性质:最重要的是粒子间的作用的局域性:一粒子对另外一粒子的影响作用不能任意快地传递,而作用传递的最高速度必须在所有参照系都是一样的速度[1]。此最高速度刚好等于真空中光速。
所有参照系间转换以转换叠加作为乘法组成一个群。它们符合以下公理:
- 闭合:两个参照系转换叠加得另外一转换。以写到。那对任意三个参照系
- 结合律:
- 单位元:存在保留参照系的单位转换
- 逆元:对任何参照系转换都有返回原本参照系的转换
考虑两个参照系和,的原点相对原点速度为(设运动方向为方向,以下忽略无关的和方向)。出于时空的均匀性洛伦兹变换必须保留惯性运动,因此它必须是一个线性转换而可以以矩阵表示:
以上是有待计算的矩阵元。它们是相对速度的函数。
参照系的原点在参照系的运动:
得
同样参照系的原点在参照系的运动:
得
因此主斜两项相等且可称为。还有:
因为,的意义就是时间膨胀的因子。因为时空的各向同性,只能取决于速度而不取决于方向。也就是说。
群元可逆因此取逆矩阵:
当然逆转换只等同于反方向同速的转换。运用上段的性质
每项比较得到:
从群的闭合性要求连续两次转换等于以速度和的单次转换。也就是说两个矩阵的积:
必须拥有同样的矩阵型式。这意味着主斜线上两项相等。因此以下比例:
必须是一个和参照系相对速度无关的常数。
插入较前等式得的定义:
而最广泛的洛伦兹变换矩阵型式为:
到这里就是转换的不变速度。如果,c是一个速度的下限。这明显与物理现实不符。因此。但还可以分成和两种情形:
得伽利略转换矩阵:
在此情况下时间是绝对的:。
在更一般的情况就得到先前的洛伦兹变换矩阵:
是在所有参照系内不变的速度上限。
到底世界是属于还是类型是最终只能靠实验验证。例如迈克耳孙-莫雷实验。
由洛伦兹变换可以得到相对论的速度变换公式。设ux、uy、uz分别是物体在惯性坐标系Σ下沿各坐标轴的速度分量,u'x、u'y、u'z分别是物体在惯性坐标系Σ'下沿各坐标轴的速度分量,那么:
如果把v变成-v,ux、uy、uz分别与u'x、u'y、u'z互换,就得到上述速度变换的反变换式。
当速度v远小于光速时,上述速度变换式退化为经典的速度变换式:
对于有着类时分量和类空分量的四维矢量,其闵可夫斯基范(Minkowski norm)是洛伦兹不变量(Lorentz invariant):
- 。
所以我们可以仿照四维位置的洛伦兹变换,写出一般四维矢量的洛伦兹变换:
其中,是方向上的单位矢量。(和)分解成垂直方向和平行于方向的方法与位置矢量的分解方法相同。取得逆变换的方法也是与四维位置的情况相同,就是交换与,然后使用相反的相对运动方向,即。
常见的四维矢量如下表:
四维矢量
|
|
|
四维位置
|
时间(乘以)
|
位置矢量
|
四维动量
|
能量(除以)
|
动量
|
四维波矢
|
角频率(除以)
|
波矢
|
四维自旋
|
(无名称)
|
自旋
|
四维电流密度
|
电荷密度(乘以)
|
电流密度
|
四维电磁位势
|
电势(除以)
|
磁矢量位
|
在平面几何,一个矢量在某坐标系统为。如果我们在原点以顺时针旋转原本坐标轴做新的坐标系统。在新系统内,同一矢量坐标为::
当然虽然矢量的坐标在不同坐标系统里面不一样,它的长度不变:。
另外如果我们以另外角度再旋转一次,那矢量新坐标和原坐标关系为:
即:连续的转角可加。
我们可以相似般把洛伦兹变换看成一种类似的坐标旋转。定义快度。那以上洛伦兹变换公式可以写成(略去不受影响的和):
也就是说:洛伦兹变换数学上等同于双曲角旋转。此坐标“旋转”中类似“长度”的不变量是:
- 。
如果我们先转换到相对原本参考系统速度为的参考系统,然后再转换到相对第二个参考系统速度为的参考系统。令、。那么在原本参考系统坐标为的事件在两次转换后参考系统内坐标为:
所以我们发现洛伦兹变换里直接相加的数量不是速度而是这个类似角度的。日常经验我们使用的伽利略变换把速度直接相加减。这是因为在速度远小于光速()的时候近似速度。
当然我们也可以直接从原本的参考系统直接转换到最后的参考系统。如果两者速度为,那么
因此得到相对论速率加法公式。
- ^ 朗道, 列夫; 栗弗席兹. 經典場論. 理论物理教程 第二卷. )