跳转到内容

磁性纳米粒子

本页使用了标题或全文手工转换
维基百科,自由的百科全书

磁性纳米粒子(英语:magnetic nanoparticle)是一种可以使用磁场操控的纳米粒子。这种粒子一般是由两个部分组成,一个是磁性材料(常为),另一个是有功能的化学成分。纳米粒子的直径小于1微米(通常为1-100纳米),而较大的微珠(microbead)的直径为0.5-500微米。由若干个别磁性纳米粒子构成的团簇被称作磁性纳米珠(magnetic nanobead),直径为50-200纳米。[1][2]磁性纳米粒子的团簇是近一步组合成磁性纳米链英语Magnetoelastic filaments的基础。[3]磁性纳米粒子最近已成为很多研究的焦点,这是因为它有一些具吸引力的性质,使它可能可以用于催化,例如基于纳米材料的催化英语nanomaterial-based catalyst[4]生物医学[5]与组织特异靶向(tissue specific targeting)、[6]磁性可调胶体光子晶体[7]微流控[8]核磁共振成像[9]磁性粒子成像英语magnetic particle imaging[10]储存装置[11][12]环境整治[13]奈流体[14][15]滤光器[16]缺陷感测器(defect sensor)、[17]磁冷却[18][19]与阳离子感测器。[20]

参考资料

[编辑]
  1. ^ Tadic, Marin; Kralj, Slavko; Jagodic, Marko; Hanzel, Darko; Makovec, Darko. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Applied Surface Science. December 2014, 322: 255–264. Bibcode:2014ApSS..322..255T. doi:10.1016/j.apsusc.2014.09.181. 
  2. ^ Magnetic Nanomaterials, Editors: S H Bossmann, H Wang, Royal Society of Chemistry, Cambridge 2017, https://pubs.rsc.org/en/content/ebook/978-1-78801-037-5页面存档备份,存于互联网档案馆
  3. ^ Kralj, Slavko; Makovec, Darko. Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles. ACS Nano. 27 October 2015, 9 (10): 9700–9707. PMID 26394039. doi:10.1021/acsnano.5b02328. 
  4. ^ A.-H. Lu; W. Schmidt; N. Matoussevitch; H. Bönnemann; B. Spliethoff; B. Tesche; E. Bill; W. Kiefer; F. Schüth. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angewandte Chemie International Edition. August 2004, 43 (33): 4303–4306. PMID 15368378. doi:10.1002/anie.200454222. 
  5. ^ A. K. Gupta; M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. June 2005, 26 (18): 3995–4021. PMID 15626447. doi:10.1016/j.biomaterials.2004.10.012. 
  6. ^ Ramaswamy, B; Kulkarni, SD; Villar, PS; Smith, RS; Eberly, C; Araneda, RC; Depireux, DA; Shapiro, B. Movement of magnetic nanoparticles in brain tissue: mechanisms and safety. Nanomedicine: Nanotechnology, Biology and Medicine. 24 June 2015, 11 (7): 1821–9. PMC 4586396可免费查阅. PMID 26115639. doi:10.1016/j.nano.2015.06.003. 
  7. ^ He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong. Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Accounts of Chemical Research. 18 September 2012, 45 (9): 1431–1440 [2020-01-22]. PMID 22578015. doi:10.1021/ar200276t. (原始内容存档于2017-10-08). 
  8. ^ Kavre, Ivna; Kostevc, Gregor; Kralj, Slavko; Vilfan, Andrej; Babič, Dušan. Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS. RSC Advances. 13 August 2014, 4 (72): 38316–38322. doi:10.1039/C4RA05602G. 
  9. ^ Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry. July 2006, 34 (2–4): 237–247. doi:10.1016/j.progsolidstchem.2005.11.010. 
  10. ^ B. Gleich; J. Weizenecker. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005, 435 (7046): 1214–1217. Bibcode:2005Natur.435.1214G. PMID 15988521. doi:10.1038/nature03808. 
  11. ^ Hyeon, Taeghwan. Chemical synthesis of magnetic nanoparticles. Chemical Communications. 3 April 2003, (8): 927–934. PMID 12744306. doi:10.1039/B207789B. 
  12. ^ Natalie A. Frey and Shouheng Sun Magnetic Nanoparticle for Information Storage Applications
  13. ^ Elliott, Daniel W.; Zhang, Wei-xian. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environmental Science & Technology. December 2001, 35 (24): 4922–4926. Bibcode:2001EnST...35.4922E. PMID 11775172. doi:10.1021/es0108584. 
  14. ^ J. Philip; Shima.P.D. B. Raj. Nanofluid with tunable thermal properties. Applied Physics Letters. 2006, 92 (4): 043108. Bibcode:2008ApPhL..92d3108P. doi:10.1063/1.2838304. 
  15. ^ Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V. Self pumping magnetic cooling. Journal of Physics D: Applied Physics. 2017, 50 (3): 03LT03. Bibcode:2017JPhD...50cLT03C. doi:10.1088/1361-6463/aa4f92. 
  16. ^ J.Philip, T.J.Kumar, P.Kalyanasundaram, B.Raj. Tunable Optical Filter. Measurement Science & Technology. 2003, 14 (8): 1289–1294. Bibcode:2003MeScT..14.1289P. doi:10.1088/0957-0233/14/8/314. 
  17. ^ Mahendran, V. Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials. Appl. Phys. Lett. 2012, 100 (7): 073104. Bibcode:2012ApPhL.100g3104M. doi:10.1063/1.3684969. 
  18. ^ 存档副本. [2020-01-25]. (原始内容存档于2021-06-13). 
  19. ^ Chaudhary, V.; Chen, X.; Ramanujan, R.V. Iron and manganese based magnetocaloric materials for near room temperature thermal management. Progress in Materials Science. 2019, 100: 64–98. doi:10.1016/j.pmatsci.2018.09.005. 
  20. ^ Philip, V. Mahendran; Felicia, Leona J. A Simple, In-Expensive and Ultrasensitive Magnetic Nanofluid Based Sensor for Detection of Cations, Ethanol and Ammonia. Journal of Nanofluids. 2013, 2 (2): 112–119. doi:10.1166/jon.2013.1050.