用户:科扎克波斯语/沙盒
100% 可再生能源的目标是使用可再生资源满足所有能源需求。推动电力、供暖、制冷和交通运输实现100%可再生能源的动力来自气候变化、污染和其他环境问题,以及经济和能源安全的担忧。要将全球主要能源供应完全转向可再生能源,必须对能源系统进行转型,因为目前大部分能源依赖于不可再生的化石燃料。
对这一话题的研究相对较新,2009年之前发表的研究不多,但近年来这一领域的关注度越来越高。大多数研究表明,在所有部门——电力、供暖、交通和工业——实现全球100%可再生能源的过渡是可行且经济上可行的。[1][2][3][4] [需要引用以验证] 100% 可再生能源系统的一个重要特征是跨部门的整体性方法,并基于这样一个假设:“只有当我们关注能源系统各部门之间的协同效应时,才能找到最佳的解决方案”,这些部门包括电力、供暖、交通或工业。[5]
大规模实施可再生能源和低碳能源战略的主要障碍被认为主要是社会和政治方面的,而非技术或经济方面。[6] 主要的障碍是气候变化否认、化石燃料游说、政治不作为、不可持续的能源消费、过时的能源基础设施和财务限制。[7]
可行性
[编辑]目前在已发表的文献中,没有对100%可再生能源系统采用统一的定义。[5]
最新研究表明,在所有部门实现全球100%可再生能源的转型——电力、供暖、交通和海水淡化——在2050年之前是可行的。[1][2][3][4] 根据对截至2018年发表的181篇关于100%可再生能源的同行评审论文的综述,“绝大多数出版物都强调100%可再生能源系统的技术可行性和经济可行性。[5] 对2004年以来发表的97篇关于岛屿的研究综述得出结论,100%可再生能源在这些研究中被认为是“技术上可行且经济上可行的”。[8] 2022年的一项研究表明,该领域大多数文献的主要结论是,100%可再生能源在全球范围内是可行的,且成本较低。[9]
现有技术(包括储能)能够在全年内的每个小时提供安全的能源供应。可持续能源系统比现有系统更高效且更具成本效益。[10] 联合国政府间气候变化专门委员会(IPCC)在其2011年的报告中指出,几乎没有什么因素限制可再生技术的整合来满足全球总能源需求。
斯坦福大学土木与环境工程教授兼大气与能源项目主任马克·Z·雅各布森(Mark Z. Jacobson)表示,通过风能、太阳能和水力发电生产所有新能源到2030年是可行的,现有的能源供应可以在2050年之前被取代。[11] 实施可再生能源计划的障碍被认为“主要是社会和政治方面的,而非技术或经济方面”。[12] 雅各布森认为,今天使用风能、太阳能和水系统的能源成本应该与今天最具成本效益的其他策略的能源成本相似。[13] 实现这一情景的主要障碍是缺乏政治意愿。[14] 他的结论遭到了其他研究人员的质疑。[15] 雅各布森发表了一篇回应,逐点驳斥了这些质疑,并声称作者们受到对2015年论文中未涉及的能源技术的忠诚影响。[16]
雅各布森认为,今天使用风能、太阳能和水系统的能源成本应该与目前最具成本效益的策略相似,他也反驳了批评意见。[17][18][19] 2022年,雅各布森和其他人发表了一篇后续论文,开发了145个国家在2035年和2050年实现100%可再生能源的路径。[20]该研究得出结论,基于风-水-太阳能(WWS)的系统“需要更少的能源,成本更低,创造了比现有做法更多的就业机会”。这一成本下降主要是由于依赖可再生电力后总能源需求的大幅减少(-56.4%)。
参考资料
[编辑]- ^ 1.0 1.1 Bogdanov, Dmitrii; Gulagi, Ashish; Fasihi, Mahdi; Breyer, Christian. Full energy sector transition toward 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Applied Energy. 2021-02-01, 283: 116273. Bibcode:2021ApEn..28316273B. ISSN 0306-2619. doi:10.1016/j.apenergy.2020.116273 (英语).
- ^ 2.0 2.1 Teske, Sven (编). Achieving the Paris Climate Agreement Goals. 2019. ISBN 978-3-030-05842-5. S2CID 198078901. doi:10.1007/978-3-030-05843-2.
- ^ 3.0 3.1 Cheap, safe 100% renewable energy possible before 2050, says Finnish uni study. Yle Uutiset. 12 April 2019 [2021-06-18] (英语).
- ^ 4.0 4.1 Gulagi, Ashish; Alcanzare, Myron; Bogdanov, Dmitrii; Esparcia, Eugene; Ocon, Joey; Breyer, Christian. Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines. Renewable and Sustainable Energy Reviews. 2021-07-01, 144: 110934. ISSN 1364-0321. doi:10.1016/j.rser.2021.110934 (英语).
- ^ 5.0 5.1 5.2 Hansen, Kenneth; et al. Status and perspectives on 100% renewable energy systems. 能源. 2019, 175: 471–480. Bibcode:2019Ene...175..471H. doi:10.1016/j.energy.2019.03.092 .
The great majority of all publications highlights the technical feasibility and economic viability of 100% RE systems.
- ^ Koumoundouros, Tessa. Stanford Researchers Have an Exciting Plan to Tackle The Climate Emergency Worldwide. ScienceAlert. 27 December 2019 [5 January 2020] (英国英语).
- ^ Wiseman, John; et al. Post Carbon Pathways (PDF). University of Melbourne. April 2013.
- ^ Meschede, Henning; Bertheau, Paul; Khalili, Siavash; Breyer, Christian. A review of 100% renewable energy scenarios on islands. WIREs Energy and Environment. 2022-06-24, 11 (6). Bibcode:2022WIREE..11E.450M. ISSN 2041-8396. S2CID 250061841. doi:10.1002/wene.450 (英语).
- ^ Breyer, Christian; Khalili, Siavash; Bogdanov, Dmitrii; Ram, Manish; Oyewo, Ayobami Solomon; Aghahosseini, Arman; Gulagi, Ashish; Solomon, A. A.; Keiner, Dominik; Lopez, Gabriel; Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian V.; Jacobson, Mark Z.; Victoria, Marta; Teske, Sven; Pregger, Thomas; Fthenakis, Vasilis; Raugei, Marco; Holttinen, Hannele; Bardi, Ugo; Hoekstra, Auke; Sovacool, Benjamin K. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access. 2022, 10: 78176–78218. Bibcode:2022IEEEA..1078176B. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3193402 . Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- News article: Shakeel, Fatima. The World Can Achieve A 100% Renewable Energy System By 2050, Researchers Say. Wonderful Engineering. 12 August 2022 [23 August 2022].
- University press release: Researchers agree: The world can reach a 100% renewable energy system by or before 2050 - Oxford Brookes University. Oxford Brookes University. [1 September 2022].
- ^ Ram, M.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors (PDF). Lappeenranta University of Technology | Energy Watch Group. 2019 [11 March 2021]. ISBN 978-952-335-339-8. ISSN 2243-3376. (原始内容 (PDF)存档于1 April 2021).
- ^ Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Coughlin, Stephen J.; Hay, Catherine A.; Manogaran, Indu Priya; Shu, Yanbo; Krauland, Anna-Katharina von. Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries. One Earth. 20 December 2019, 1 (4): 449–463. Bibcode:2019AGUFMPA32A..01J. ISSN 2590-3330. doi:10.1016/j.oneear.2019.12.003 (英语).
- ^ Koumoundouros, Tessa. Stanford Researchers Have an Exciting Plan to Tackle The Climate Emergency Worldwide. ScienceAlert. 27 December 2019 [5 January 2020]. (原始内容存档于10 March 2020) (英国英语).
- ^ Delucchi, Mark A; Jacobson, Mark Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy. 2011, 39 (3): 1170–90. Bibcode:2011EnPol..39.1170D. doi:10.1016/j.enpol.2010.11.045.
- ^ Armaroli, Nicola; Balzani, Vincenzo. Towards an electricity-powered world. Energy and Environmental Science. 2011, 4 (9): 3193–3222 [3216]. S2CID 1752800. doi:10.1039/c1ee01249e.
- ^ Scientists Sharply Rebut Influential Renewable-Energy Plan. [26 June 2020]. (原始内容存档于25 February 2020).
- ^ Frew, Bethany A.; Cameron, Mary A.; Delucchi, Mark A.; Jacobson, Mark Z. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proceedings of the National Academy of Sciences. 27 June 2017, 114 (26): E5021–E5023. Bibcode:2017PNAS..114E5021J. ISSN 0027-8424. PMC 5495290 . PMID 28630350. doi:10.1073/pnas.1708069114 (英语).
- ^ Delucchi, Mark A; Jacobson, Mark Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy. 2011, 39 (3): 1170–90. Bibcode:2011EnPol..39.1170D. doi:10.1016/j.enpol.2010.11.045.
- ^ Scientists Sharply Rebut Influential Renewable-Energy Plan. MIT Technology Review.
- ^ Frew, Bethany A.; Cameron, Mary A.; Delucchi, Mark A.; Jacobson, Mark Z. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proceedings of the National Academy of Sciences. 27 June 2017, 114 (26): E5021–E5023. Bibcode:2017PNAS..114E5021J. ISSN 0027-8424. PMC 5495290 . PMID 28630350. doi:10.1073/pnas.1708069114 (英语).
- ^ Jacobson, Mark Z.; von Krauland, Anna-Katharina; Coughlin, Stephen J.; Dukas, Emily; Nelson, Alexander J. H.; Palmer, Frances C.; Rasmussen, Kylie R. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy & Environmental Science. 2022, 15 (8): 3343–3359. ISSN 1754-5692. S2CID 250126767. doi:10.1039/D2EE00722C (英语).