跳转到内容

顺序优先法

维基百科,自由的百科全书

顺序优先法(OPA)是一种多准则决策分析方法英语Multiple-criteria decision analysis(multi-criteria decision-making ,MCDM),有助于解决具有偏好关系集体决策问题。

描述

[编辑]

大多数的多准则决策分析方法,如层次分析法(analytic hierarchy Process, AHP)和网络分析法英语Analytic network process(Analytic Network Process, ANP),是以成对比较矩阵为基础的[1]

决策问题
决策问题[2]

该方法使用线性规划方法同时计算专家、评价指标和备选方案的权重[2]。在OPA方法中使用序数数据英语Ordinal data的主要原因是与涉及人类的群体决策问题中使用的精确比例相比,序数数据的可及性和准确性[3]

在现实世界中,专家们可能对某一选择或评价指标没有足够的了解。这种情况下,问题的输入数据是不完整的,此时需要在OPA线性规划模型中删除与评价指标或备选方案相关的约束条件[4]

近年来,各种类型的数据归一化方法被应用于多准则决策方法 (multi-criteria decision-making ,MCDM) 中。Palczewski和 Satabun表明,使用各种数据归一化方法可以改变多准则决策方法的最终排名[5]。Javed 及其同事表明,可以通过避免数据归一化来解决多准则决策问题[6]。不需要对偏好关系进行归一化,因此,OPA方法不需要数据归一化[7]

OPA方法

[编辑]

OPA模型是一个线性规划模型,可以利用单纯形法来解决。该方法的步骤如下:[8][9][2]

第一步: 确定专家,并根据工作经验、教育资格等确定专家的优先次序。

第二步: 确定评价指标,并确定每个专家对指标的偏好。

第三步: 确定备选方案,并由每个专家确定在每一评价指标下备选方案的偏好。

第四步: 构建以下线性规划模型,并通过适当的优化软件如LINGO、GAMS、MATLAB等进行求解。

在上述模型中。代表专家的等级, 代表指标的等级,代表备选方案的等级。而代表专家i在评价指标j下备选方案k的权重。在解决OPA线性规划模型后,每个备选方案的权重由以下公式计算。

每个评价指标的权重按以下公式计算。

每个专家的权重按以下公式计算。

例子

[编辑]
例子的决策问题
例子的决策问题

假设要调查买房子的问题[10]。在这个决策问题中,有两位专家,同时有两个评价指标,即成本(c)和建筑质量(q),为房屋的选择提供标准。另一方面,有三所房子(h1,h2,h3)可供购买。第一个专家(x)有三年的工作经验,第二个专家(y)有两年的工作经验。该问题的结构如图所示。

第 1 步:第一位专家(x)比专家(y)有更多经验,因此 x>y。

第 2 步:专家对评价指标的偏好总结在下表中。

专家对评价指标的意见
评价指标 专家(x) 专家(y)
c 1 2
q 2 1

第 3 步:专家对备选方案的偏好总结在下表中。

专家对备选方案的意见
备选方案 专家(x) 专家(y)
c q c q
h1 1 2 1 3
h2 3 1 2 1
h3 2 3 3 2

第 4 步:根据输入数据形成 OPA 线性规划模型,具体如下。

用优化软件求解上述模型后,得到专家、评价指标和备选方案的权重如下。

因此,房子1(h1)被认为是最佳选择。此外,可以认为,评价指标成本(c)比评价指标建筑质量(q)更重要。另外,根据专家的权重,可以认为,与专家(y)相比,专家(x)对最终选择的影响更大。

应用

[编辑]

OPA方法在各个研究领域的应用总结如下。

农业、制造业、服务业

建筑行业

能源与环境

医疗保健

信息技术

交通运输

延伸

[编辑]

以下是 OPA 方法的几个扩展。

  • 灰色顺序优先法 (OPA-G)[7]
  • 模糊顺序优先法 (OPA-F)[28]
  • OPA 中的置信度测量[8]
  • 鲁棒顺序优先法 (OPA-R)[9]
  • 混合 OPA-模糊 EDAS[13]
  • 混合 DEA-OPA 模型[11]
  • 混合型 MULTIMOORA-OPA[38]
  • 团体加权顺序优先法 (GWOPA)[39]

软件

[编辑]

以下非盈利工具可用于解决使用 OPA 方法的 MCDM 问题。

  • 基于网络的解算器[40]
  • 基于 Excel 的解算器[41]
  • 基于林格的解算器[42]
  • 基于 Matlab 的求解器[43]

参考文献

[编辑]
  1. ^ Penadés-Plà, Vicent; García-Segura, Tatiana; Martí, José V.; Yepes, Víctor. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability. 2016-12, 8 (12) [2022-10-31]. ISSN 2071-1050. doi:10.3390/su8121295. (原始内容存档于2022-11-22) (英语). 
  2. ^ 2.0 2.1 2.2 Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing. 2020-01-01, 86 [2022-10-31]. ISSN 1568-4946. doi:10.1016/j.asoc.2019.105893. (原始内容存档于2022-10-18) (英语). 
  3. ^ Wang, Haomin; Peng, Yi; Kou, Gang. A two-stage ranking method to minimize ordinal violation for pairwise comparisons. Applied Soft Computing. 2021-07-01, 106 [2022-10-31]. ISSN 1568-4946. doi:10.1016/j.asoc.2021.107287. (原始内容存档于2022-10-31) (英语). 
  4. ^ 4.0 4.1 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10) [2022-10-31]. ISSN 1868-5145. doi:10.1007/s12652-020-02649-w. (原始内容存档于2022-09-23) (英语). 
  5. ^ Palczewski, Krzysztof; Sałabun, Wojciech. Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location. Procedia Computer Science. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019. 2019-01-01, 159 [2022-10-31]. ISSN 1877-0509. doi:10.1016/j.procs.2019.09.378. (原始内容存档于2022-10-31) (英语). 
  6. ^ 6.0 6.1 Javed, Saad Ahmed; Gunasekaran, Angappa; Mahmoudi, Amin. DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Computers & Industrial Engineering. 2022-11-01, 173 [2022-10-31]. ISSN 0360-8352. doi:10.1016/j.cie.2022.108674. (原始内容存档于2022-10-29) (英语). 
  7. ^ 7.0 7.1 7.2 7.3 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Zhang, Na. Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment. 2021-01, 30 (1) [2022-10-31]. ISSN 0964-4733. doi:10.1002/bse.2623. (原始内容存档于2022-09-26) (英语). 
  8. ^ 8.0 8.1 8.2 Mahmoudi, Amin; Javed, Saad Ahmed. Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach. Group Decision and Negotiation. 2022-10, 31 (5). ISSN 0926-2644. PMC 9409630可免费查阅. PMID 36042813. doi:10.1007/s10726-022-09790-1 (英语). 
  9. ^ 9.0 9.1 9.2 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. A novel project portfolio selection framework towards organizational resilience: Robust Ordinal Priority Approach. Expert Systems with Applications. 2022-02-01, 188. ISSN 0957-4174. doi:10.1016/j.eswa.2021.116067 (英语). 
  10. ^ Ordinal priority approach. Wikipedia. 2022-10-23 (英语). 
  11. ^ 11.0 11.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decision and Negotiation. 2022-04-01, 31 (2). ISSN 1572-9907. doi:10.1007/s10726-021-09770-x (英语). 
  12. ^ Shajedul, Islam. Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28 [2022-10-31]. doi:10.52812/ijgs.3. (原始内容存档于2022-10-27) (美国英语). 
  13. ^ 13.0 13.1 Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8) [2022-10-31]. ISSN 2071-1050. doi:10.3390/su14084732. (原始内容存档于2022-10-31) (英语). 
  14. ^ Tafakkori, Keivan; Tavakkoli-Moghaddam, Reza; Siadat, Ali. Sustainable negotiation-based nesting and scheduling in additive manufacturing systems: A case study and multi-objective meta-heuristic algorithms. Engineering Applications of Artificial Intelligence. 2022-06-01, 112. ISSN 0952-1976. doi:10.1016/j.engappai.2022.104836 (英语). 
  15. ^ Evaluation of Automotive Parts Suppliers through Ordinal Priority Approach and TOPSIS | Management Science and Business Decisions. 2022-07-20 [2022-10-31]. doi:10.52812/msbd.37. (原始内容存档于2022-07-21) (美国英语). 
  16. ^ Li, Jintao; Dai, Yan; Wang, Cynthia Changxin; Sun, Jun. Assessment of Environmental Demands of Age-Friendly Communities from Perspectives of Different Residential Groups: A Case of Wuhan, China. International Journal of Environmental Research and Public Health. 2022-07-26, 19 (15) [2022-10-31]. ISSN 1660-4601. PMC 9368052可免费查阅. PMID 35897508. doi:10.3390/ijerph19159120. (原始内容存档于2022-08-02) (英语). 
  17. ^ Mahmoudi, Amin; Javed, Saad Ahmed. Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach. Evaluation and Program Planning. 2022-04-01, 91. ISSN 0149-7189. doi:10.1016/j.evalprogplan.2021.102022 (英语). 
  18. ^ 18.0 18.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Adopting distributed ledger technology for the sustainable construction industry: evaluating the barriers using Ordinal Priority Approach. Environmental Science and Pollution Research. 2022-02-01, 29 (7). ISSN 1614-7499. PMC 8443118可免费查阅. PMID 34528198. doi:10.1007/s11356-021-16376-y (英语). 
  19. ^ 19.0 19.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Blockchain technology in construction organizations: risk assessment using trapezoidal fuzzy ordinal priority approach. Engineering, Construction and Architectural Management. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 0969-9988. doi:10.1108/ECAM-01-2022-0014. 
  20. ^ Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英语). 
  21. ^ 21.0 21.1 Mahmoudi, Amin; Sadeghi, Mahsa; Deng, Xiaopeng. Performance measurement of construction suppliers under localization, agility, and digitalization criteria: Fuzzy Ordinal Priority Approach. Environment, Development and Sustainability. 2022-04-12. ISSN 1573-2975. PMC 9001166可免费查阅. PMID 35431618. doi:10.1007/s10668-022-02301-x (英语). 
  22. ^ Faisal, Mohd. Nishat; Al Subaie, Abdulla Abdulaziz; Sabir, Lamay Bin; Sharif, Khurram Jahangir. PMBOK, IPMA and fuzzy-AHP based novel framework for leadership competencies development in megaprojects. Benchmarking: An International Journal. 2022-01-01,. ahead-of-print (ahead-of-print) [2022-10-31]. ISSN 1463-5771. doi:10.1108/BIJ-10-2021-0583. (原始内容存档于2022-09-23). 
  23. ^ Elkadeem, Mohamed R.; Younes, Ali; Mazzeo, Domenico; Jurasz, Jakub; Elia Campana, Pietro; Sharshir, Swellam W.; Alaam, Mohamed A. Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment. Applied Energy. 2022-09-15, 322. ISSN 0306-2619. doi:10.1016/j.apenergy.2022.119532 (英语). 
  24. ^ Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28 [2022-10-31]. doi:10.52812/ijgs.3. (原始内容存档于2022-10-27) (美国英语). 
  25. ^ Evaluation of Barriers to Electric Vehicle Adoption in Indonesia through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2022-07-29 [2022-10-31]. doi:10.52812/ijgs.46. (原始内容存档于2022-11-18) (美国英语). 
  26. ^ 26.0 26.1 Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英语). 
  27. ^ Sotoudeh-Anvari, Alireza. The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing. 2022-09-01, 126 [2022-10-31]. ISSN 1568-4946. PMC 9245376可免费查阅. PMID 35795407. doi:10.1016/j.asoc.2022.109238. (原始内容存档于2022-10-31) (英语). 
  28. ^ 28.0 28.1 28.2 Mahmoudi, Amin; Javed, Saad Ahmed; Mardani, Abbas. Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era. Operations Management Research. 2022-06-01, 15 (1). ISSN 1936-9743. PMC 7960884可免费查阅. doi:10.1007/s12063-021-00178-z (英语). 
  29. ^ Evaluating Suppliers for Healthcare Centre using Ordinal Priority Approach | Management Science and Business Decisions. 2021-07-25 [2022-10-31]. doi:10.52812/msbd.12. (原始内容存档于2021-08-04) (美国英语). 
  30. ^ Dorado Chaparro, Javier; Fernández-Bermejo Ruiz, Jesús; Santofimia Romero, María José; del Toro García, Xavier; Cantarero Navarro, Rubén; Bolaños Peño, Cristina; Llumiguano Solano, Henry; Villanueva Molina, Félix Jesús; Gonçalves Silva, Anabela; López, Juan Carlos. Phyx.io: Expert-Based Decision Making for the Selection of At-Home Rehabilitation Solutions for Active and Healthy Aging. International Journal of Environmental Research and Public Health. 2022-01, 19 (9) [2022-10-31]. ISSN 1660-4601. PMC 9103419可免费查阅. PMID 35564884. doi:10.3390/ijerph19095490. (原始内容存档于2022-07-18) (英语). 
  31. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Koppen, Mario; Gupta, Brij B. Personal Mobility in Metaverse With Autonomous Vehicles Using Q-Rung Orthopair Fuzzy Sets Based OPA-RAFSI Model. IEEE Transactions on Intelligent Transportation Systems. 2022 [2022-10-31]. ISSN 1524-9050. doi:10.1109/TITS.2022.3186294. (原始内容存档于2022-11-18). 
  32. ^ Pamucar, Dragan; Deveci, Muhammet; Gokasar, Ilgin; Tavana, Madjid; Köppen, Mario. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms. Technological Forecasting and Social Change. 2022-09-01, 182. ISSN 0040-1625. doi:10.1016/j.techfore.2022.121778 (英语). 
  33. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Pedrycz, Witold; Wen, Xin. Autonomous Bus Operation Alternatives in Urban Areas Using Fuzzy Dombi-Bonferroni Operator Based Decision Making Model. IEEE Transactions on Intelligent Transportation Systems. 2022 [2022-10-31]. ISSN 1524-9050. doi:10.1109/TITS.2022.3202111. (原始内容存档于2022-09-23). 
  34. ^ Su, Chong; Ma, Xuri; Lv, Jing; Tu, Tao; Li, Hongguang. A multilayer affective computing model with evolutionary strategies reflecting decision-makers’ preferences in process control. ISA Transactions. 2022-09-01, 128. ISSN 0019-0578. doi:10.1016/j.isatra.2021.11.038 (英语). 
  35. ^ Amirghodsi, Sirous; Naeini, Ali Bonyadi; Makui, Ahmad. An Integrated Delphi-DEMATEL-ELECTRE Method on Gray Numbers to Rank Technology Providers. IEEE Transactions on Engineering Management. 2022-08, 69 (4) [2022-10-31]. ISSN 0018-9391. doi:10.1109/TEM.2020.2980127. (原始内容存档于2022-10-31). 
  36. ^ Bouraima, Mouhamed Bayane; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka; Qiu, Yanjun; Tanackov, Ilija. Prioritization Road Safety Strategies Towards Zero Road Traffic Injury Using Ordinal Priority Approach. Operational Research in Engineering Sciences: Theory and Applications. 2022-08-19, 5 (2) [2022-10-31]. ISSN 2620-1747. doi:10.31181/oresta190822150b. (原始内容存档于2022-08-21) (英语). 
  37. ^ Bouraima, Mouhamed Bayane; Qiu, Yanjun; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka. Evaluation of Factors Affecting Road Maintenance in Kenyan Counties Using the Ordinal Priority Approach. Journal of Computational and Cognitive Engineering. 2022-08-17 [2022-10-31]. ISSN 2810-9503. doi:10.47852/bonviewJCCE2202272. (原始内容存档于2022-09-23) (英语). 
  38. ^ Irvanizam, Irvanizam; Zulfan, Zulfan; Nasir, Puti F.; Marzuki, Marzuki; Rusdiana, Siti; Salwa, Nany. An Extended MULTIMOORA Based on Trapezoidal Fuzzy Neutrosophic Sets and Objective Weighting Method in Group Decision-Making. IEEE Access. 2022, 10 [2022-10-31]. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3170565. (原始内容存档于2022-11-18). 
  39. ^ Mahmoudi, Amin; Abbasi, Mehdi; Yuan, Jingfeng; Li, Lingzhi. Large-scale group decision-making (LSGDM) for performance measurement of healthcare construction projects: Ordinal Priority Approach. Applied Intelligence. 2022-09-01, 52 (12). ISSN 1573-7497. PMC 9449288可免费查阅. PMID 36091930. doi:10.1007/s10489-022-04094-y (英语). 
  40. ^ Web-based solver. ordinalpriorityapproach.com. [2022-10-31]. (原始内容存档于2022-10-19). 
  41. ^ Excel-based solver, Zenodo, 2021-01-21 [2022-10-31], (原始内容存档于2022-10-16) 
  42. ^ Lingo-based solver, 2022-07-07 [2022-10-31], (原始内容存档于2022-10-21) 
  43. ^ Matlab-based solver. www.mathworks.com. [2022-10-31]. (原始内容存档于2022-10-17) (英语).