跳至內容

畢達哥拉斯樹

維基百科,自由的百科全書
畢達哥拉斯樹

畢達哥拉斯樹(英語:Pythagoras tree)是一個以正方形為起點建立起的分形平面,1942年由荷蘭數學教師阿爾伯特·E·博斯曼提出[1]。由於其建立過程的第一步是在大正方形上方建立兩個較小的正方形,三個正方形間是一個等腰直角三角形,故以發現勾股定理的古希臘數學家畢達哥拉斯命名。最大正方形的尺寸為L×L,那麼整個畢達哥拉斯樹會局限在6L×4L的空間中[2][3]。畢達哥拉斯樹的平滑曲線是萊維C形曲線

建立

[編輯]
Construction of the Pythagoras tree, order 1
Construction of the Pythagoras tree, order 1
Order 2
Order 2
Order 3
Order 3
Order 4
Order 4
起點 第一級 第二級 第三級

畢達哥拉斯樹的建立是從一個大正方形開始的,在該正方形的上方建立兩個全等的較小正方形,三個正方形間呈現一個等腰直角三角形,故較小正方形的邊長為大正方形邊長的√2/2。對這兩個較小的正方形重複這一過程,得到四個更小的正方形,如此繼續下去。若設第一個大正方形的邊長為1,在第n級時,會增加2n個小正方形,每個小正方的邊長是 (√2/2)n, 故每一步增加的面積均為2n×(½√2)2n=1,從這一點來看,當n趨近於無窮時,畢達哥拉斯樹的總面積也趨於無窮。但實際上的情況是,當n大於5時,所增加的小正方形會發生互相重疊,導致畢達哥拉斯樹的面積是有限的,它局限在一個6×4 的盒子裡,但具體值不易求出[4]

角度變化

[編輯]
fourth-order tree, one overlap visible tenth-order tree
第四級 第十級

畢達哥拉斯樹的一個變種是改變正方形之間的夾角,比如第一步時讓兩個較小的正方形和大正方形之間的夾角為60度,三個正方形之間的三角形成為等邊三角形,這導致組成樹的每一個正方形的邊長都相等。這一變種到了第四步開始就會發生重疊,最後形成了全等的正方形組成的一個大六邊形。

參考文獻

[編輯]
  1. ^ Bruno's column - februari 2004 網際網路檔案館存檔,存檔日期2009-01-18.
  2. ^ Wisfaq.nl. [2012-08-12]. (原始內容存檔於2020-03-12). 
  3. ^ Pourahmadazar, J.; Ghobadi, C.; Nourinia, J.;. Novel Modified Pythagorean Tree Fractal Monopole Antennas for UWB Applications. New York: IEEE. 2011. doi:10.1109/LAWP.2011.2154354. 
  4. ^ Pourahmadazar, J.; Ghobadi, C.; Nourinia, J.; (2011). Novel Modified Pythagorean Tree Fractal Monopole Antennas for UWB Applications. New York: IEEE.

外在連結

[編輯]