跳至內容

FOSB

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
FOSB
識別號
別名FOSB;, AP-1, G0S3, GOS3, GOSB, FosB, ΔFosB, FosB proto-oncogene, AP-1 transcription factor subunit
外部IDOMIM164772 MGI95575 HomoloGene31403 GeneCardsFOSB
基因位置(人類
19號染色體
染色體19號染色體[1]
19號染色體
FOSB的基因位置
FOSB的基因位置
基因座19q13.32起始45,467,995 bp[1]
終止45,475,179 bp[1]
RNA表現模式
查閱更多表現資料
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

​NM_001114171
​NM_006732

NM_008036
​NM_001347586

蛋白序列

NP_001107643
​NP_006723

NP_001334515
​NP_032062

基因位置​(UCSC)Chr 19: 45.47 – 45.48 MbChr 7: 19.04 – 19.04 Mb
PubMed​查找[3][4]
維基資料
檢視/編輯人類檢視/編輯小鼠

FBJ murine osteosarcoma viral oncogene homolog B,又名為FOSBFosB,是一個在人體中由FOSB 基因編碼(encoded)的蛋白質[參1][參2][參3]FOS 基因家族由四個成員組成:FOS英語C-Fos、 FOSB、 FOSL1英語FOSL1、和FOSL2英語FOSL2。 這些基因組成(encode) 白胺酸拉鏈(leucine zipper)蛋白質。這種蛋白質可以與JUN英語C-jun 這個蛋白質及其家族 (e.g., c-Jun英語c-JunJunD英語JunD) 二聚體化(dimerize),然後形成轉錄因子(transcription factor)綜合區-AP-1轉錄因子[註1]

如同這些,FOS蛋白質就被表示成關於細胞增加、細胞差異化、細胞轉型的調節者。 [註2][參1]

FosB與其選擇性剪接形成的產物——「ΔFosB」和進一步剪接而成的「'Δ2ΔFosB」都參與到了骨硬化英語osteosclerosis的過程之中,但 Δ2ΔFosB 沒有已知的轉錄活化區域英語transactivation domain,無法通過AP-1 複合物影響轉錄過程。[參4]

現已知ΔFosB之端點銜接處英語splice變化程度英語Variant_of_uncertain_significance是發展並維持病理行為神經可塑性的核心因素(充分且必要因素)。而病理行為神經可塑性都參與了行為成癮(與自然酬賞英語natural reward相關)及藥物成癮的形成過程。[參5]

註解

[編輯]

    註:

  1. ^ 原文:hese genes encode leucine zipper proteins that can dimerize with proteins of the JUN英語C-jun family (e.g., c-Jun英語c-Jun, JunD英語JunD), thereby forming the transcription factor complex AP-1.
  2. ^ 原文:As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation.

參考資料

[編輯]

    參:

  1. ^ 1.0 1.1 Entrez Gene: FOSB FBJ murine osteosarcoma viral oncogene homolog B. (原始內容存檔於2019-10-16). 
  2. ^ Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA and Cell Biology. Oct 1990, 9 (8): 579–87. PMID 1702972. doi:10.1089/dna.1990.9.579. 
  3. ^ Martin-Gallardo A, McCombie WR, Gocayne JD, FitzGerald MG, Wallace S, Lee BM, Lamerdin J, Trapp S, Kelley JM, Liu LI. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genetics. Apr 1992, 1 (1): 34–9. PMID 1301997. doi:10.1038/ng0492-34. 
  4. ^ Sabatakos G, Rowe GC, Kveiborg M, Wu M, Neff L, Chiusaroli R, Philbrick WM, Baron R. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity. Journal of Bone and Mineral Research. 2008-05, 23 (5): 584–95. PMC 2674536可免費查閱. PMID 18433296. doi:10.1359/jbmr.080110. 
  5. ^ Ruffle JK. Molecular neurobiology of addiction: what's all the (Δ)FosB about?. The American Journal of Drug and Alcohol Abuse. Nov 2014, 40 (6): 428–37. PMID 25083822. doi:10.3109/00952990.2014.933840.
    ΔFosB as a therapeutic biomarker
    The strong correlation between chronic drug exposure and ΔFosB provides novel opportunities for targeted therapies in addiction (118), and suggests methods to analyze their efficacy (119). Over the past two decades, research has progressed from identifying ΔFosB induction to investigating its subsequent action (38). It is likely that ΔFosB research will now progress into a new era – the use of ΔFosB as a biomarker. If ΔFosB detection is indicative of chronic drug exposure (and is at least partly responsible for dependence of the substance), then its monitoring for therapeutic efficacy in interventional studies is a suitable biomarker (Figure 2). Examples of therapeutic avenues are discussed herein. ...

    Conclusions
    ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. The formation of ΔFosB in multiple brain regions, and the molecular pathway leading to the formation of AP-1 complexes is well understood. The establishment of a functional purpose for ΔFosB has allowed further determination as to some of the key aspects of its molecular cascades, involving effectors such as GluR2 (87,88), Cdk5 (93) and NFkB (100). Moreover, many of these molecular changes identified are now directly linked to the structural, physiological and behavioral changes observed following chronic drug exposure (60,95,97,102). New frontiers of research investigating the molecular roles of ΔFosB have been opened by epigenetic studies, and recent advances have illustrated the role of ΔFosB acting on DNA and histones, truly as a 『『molecular switch』』 (34). As a consequence of our improved understanding of ΔFosB in addiction, it is possible to evaluate the addictive potential of current medications (119), as well as use it as a biomarker for assessing the efficacy of therapeutic interventions (121,122,124). Some of these proposed interventions have limitations (125) or are in their infancy (75). However, it is hoped that some of these preliminary findings may lead to innovative treatments, which are much needed in addiction.
     


外部連結

[編輯]

相關條目

[編輯]

相關主題:


FOSB引用了美國國家醫學圖書館提供的資料,這些資料屬於公共領域